6 resultados para Aversive memory. Learning. Anxiolytic. Antidepressant. Acute restraint stress. Mice
em Universidade do Minho
Resumo:
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a marked decline in cognition and memory function. Increasing evidence highlights the essential role of neuroinflammatory and immune-related molecules, including those produced at the brain barriers, on brain immune surveillance, cellular dysfunction and amyloid beta (Aß) pathology in AD. Therefore, understanding the response at the brain barriers may unravel novel pathways of relevance for the pathophysiology of AD. Herein, we focused on the study of the choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, in aging and in AD. Specifically, we used the PDGFB-APPSwInd (J20) transgenic mouse model of AD, which presents early memory decline and progressive Aß accumulation, and littermate age-matched wild-type (WT) mice, to characterize the CP transcriptome at 3, 5-6 and 11-12months of age. The most striking observation was that the CP of J20 mice displayed an overall overexpression of type I interferon (IFN) response genes at all ages. Moreover, J20 mice presented a high expression of type II IFN genes in the CP at 3months, which became lower than WT at 5-6 and 11-12months. Importantly, along with a marked memory impairment and increased glial activation, J20 mice also presented a similar overexpression of type I IFN genes in the dorsal hippocampus at 3months. Altogether, these findings provide new insights on a possible interplay between type I and II IFN responses in AD and point to IFNs as targets for modulation in cognitive decline.
Resumo:
[Extrat] The answer to the social and economic challenges that it is assumed literacy (or its lack) puts to developed countries deeply concerns public policies of governments namely those of the OECD area. In the last decades, these concerns gave origin to several and diverse monitoring devices, initiatives and programmes for reading (mainly) development, putting a strong stress on education. UNESCO (2006, p. 6), for instance, assumes that the literacy challenge can only be met raising the quality of primary and secondary education and intensifying programmes explicitly oriented towards youth and adult literacy. (...)
Resumo:
Many of our everyday tasks require the control of the serial order and the timing of component actions. Using the dynamic neural field (DNF) framework, we address the learning of representations that support the performance of precisely time action sequences. In continuation of previous modeling work and robotics implementations, we ask specifically the question how feedback about executed actions might be used by the learning system to fine tune a joint memory representation of the ordinal and the temporal structure which has been initially acquired by observation. The perceptual memory is represented by a self-stabilized, multi-bump activity pattern of neurons encoding instances of a sensory event (e.g., color, position or pitch) which guides sequence learning. The strength of the population representation of each event is a function of elapsed time since sequence onset. We propose and test in simulations a simple learning rule that detects a mismatch between the expected and realized timing of events and adapts the activation strengths in order to compensate for the movement time needed to achieve the desired effect. The simulation results show that the effector-specific memory representation can be robustly recalled. We discuss the impact of the fast, activation-based learning that the DNF framework provides for robotics applications.
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
Tau-mediated neurodegeneration is a central event in Alzheimer's disease (AD) and other tauopathies. Consistent with suggestions that lifetime stress may be a clinically-relevant precipitant of AD pathology, we previously showed that stress triggers tau hyperphosphorylation and accumulation; however, little is known about the etiopathogenic interaction of chronic stress with other AD risk factors, such as sex and aging. This study focused on how these various factors converge on the cellular mechanisms underlying tau aggregation in the hippocampus of chronically stressed male and female (middle-aged and old) mice expressing the most commonly found disease-associated Tau mutation in humans, P301L-Tau. We report that environmental stress triggers memory impairments in female, but not male, P301L-Tau transgenic mice. Furthermore, stress elevates levels of caspase-3-truncated tau and insoluble tau aggregates exclusively in the female hippocampus while it also alters the expression of the molecular chaperones Hsp90, Hsp70, and Hsp105, thus favoring accumulation of tau aggregates. Our findings provide new insights into the molecular mechanisms through which clinically-relevant precipitating factors contribute to the pathophysiology of AD. Our data point to the exquisite sensitivity of the female hippocampus to stress-triggered tau pathology.
Resumo:
"Lecture notes in computer science series", ISSN 0302-9743, vol. 9121