17 resultados para Antioxidant agents

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work aims to characterize and quantify the phenolic composition and to evaluate the antioxidant activity of Glycyrrhiza glabra L. (commonly known as licorice) rhizomes and roots. The antioxidant potential of its methanol/water extract could be related with flavones (mainly apigenin derivatives), flavanones (mainly liquirintin derivatives), a methylated isoflavone and a chalcone, identified in the extract. Lipid peroxidation inhibition was the most pronounced antioxidant effect (EC50=0.24±0.01 µg/mL and 22.74±2.42 µg/mL in TBARS and -carotene/linoleate assays, respectively), followed by free radicals scavenging activity (EC50=111.54±6.04 µg/mL) and, finally, reducing power (EC50=128.63±0.21 µg/mL). In this sense, licorice extract could be used as a source of antioxidants for pharmaceutical, cosmetic and/or food industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aimed to characterize the extracts prepared from Pimpinella anisum L. (anise) and Coriandrum sativum L. (coriander) (Apiaceae plants) seeds in terms of phenolic composition, and to correlate the obtained profiles with the antioxidant activity. Anise gave the highest abundance in phenolic compounds (42.09± 0.11 mg/g extract), mainly flavonoids (28.08±0.17 mg/g extract) and phenolic acids (14.01±0.06 mg/g extract), and also the highest antioxidant potential, accessed for the ability to inhibit lipid peroxidation and -carotene bleaching, reducing power and free radical scavenger activity. Apigenin and luteolin derivatives, as also caffeoylquinic acid derivatives appear to be directly related with the higher in vitro antioxidant potential of the anise extract.. In contrast, the weak antioxidant potential of coriander seems to be due to their lower abundance in phenolic compounds (2.24±0.01 mg/g extract). Further studies are necessary to evaluate the in vivo antioxidant potential of the tested extracts, but the performed in vitro experiments highlight them as potential health promoters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Purines, such as adenine, are one of the most important naturally occurring nitrogen heterocycles and they are frequently used as bioactive agents.[1,2] The increasing number of synthetic purines reveals the great potential of these compounds as enzyme inhibitors. Protein Kinases have an important regulatory role in cell proliferation, differentiation and signalling processes. Abnormal signal transduction is responsible for devastating diseases such as cancer. All of the protein kinases identified have in common the cofactor ATP indicating that the adenine nucleus is a very important scaffold for discovery of new anti-cancer agents.[3,4] Previous work identified a modest anticancer activity in a family of 6-arylaminopurines. In the view of these results, it seemed reasonable to assume that some interesting anticancer agents might result by replacement of the phenyl group by a secondary amino group linked to the N-6 atom of the adenine moiety. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Human Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Numerous diseases have been related with free radicals overproduction and oxidative stress. Botanical preparations possess a multitude of bioactive properties, including antioxidant potential, which has been mainly related with the presence of phenolic compounds. However, the mechanisms of action of these phytochemicals, in vivo effects, bioavailability and bio-efficacy still need research. Scope and Approach: The present report aims to provide a critical review on the aspects related with the in vivo antioxidant activity of phenolic extracts and compounds from plant origin. Key findings: Biological functions beyond the human metabolism were discussed, comparing in vivo vs. in vitro studies, as also focusing the conditioning factors for phenolic compounds bioavailability and bio-efficacy. Furthermore, an upcoming perspective about the use of phytochemicals as life expectancy promoters and anti-aging factors in human individuals was provided. Conclusions: Overall, and despite all of those advances, the study of the biological potential of numerous natural matrices still remains a hot topic among the scientific community. In fact, the available knowledge about the responsible phytochemicals for the biological potential, their mechanisms of action, the establishment of therapeutic and prophylactic doses, and even the occurrence of biochemical inter-relations, is considerable scarce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol–gel process. Both alkaline and acidic catalysis of the sol–gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mushrooms are rich sources of bioactive compounds such as phenolic acids. When ingested, these molecules have to be released from the matrix to be transformed/absorbed by the organism, so that they can exert their bioactivity. Several in vitro methodologies have been developed in order to evaluate the bioavailability of bioactive compounds. Herein, two Hericium species were analyzed for their chemical composition and antioxidant activity. Furthermore, an in vitro digestion of the mushrooms and mushroom phenolic extracts was performed, and the digested samples were also submitted to antioxidant activity evaluation in order to evaluate the bioaccessibility of the phenolic acids identified in the samples. Hericium species showed similar chemical profiles (except for tocopherols), varying only in the concentration of the compounds. The phenolic extracts revealed higher antioxidant activity than the in vitro digested samples, meaning that this process decrease the antioxidant properties of the extract/mushroom. Nevertheless, phenolic acids were found in the digested samples, meaning that those molecules are bioaccessible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mushrooms contain a multitude of biomolecules with nutritional and/or biological activity. Among the bioactive molecules, phenolic compounds and tocopherols are the most responsible for their antioxidant activity. In the present work, Boletus edulis, Lentinus edodes and Xerocomus badius, three edible mushroom species originated from Poland, were analyzed for their chemical composition and antioxidant activity. Carbohydrates were the most abundant macronutrients, followed by proteins and ash. Fructose, mannitol and trehalose were the prevalent sugars, but glucose was only found in B. edulis. Polyunsaturated fatty acids predominated over mono and saturated fatty acids. Palmitic, oleic and linoleic acids were abundant in the three samples. α- and β- Tocopherols were quantified in all the samples, but γ-tocopherol was only identified in X. badius. Oxalic and fumaric acids were quantified in the three samples; quinic acid was only present in L. edodes, and malic and citric acids were only found in X. badius. p-Hydroxybenzoic, protocatechuic and cinnamic acids were quantified in all the species, while p-coumaric acid was only found in B. edulis. This species and X. badius revealed the highest antioxidant properties, being B. edulis more effective in radicals scavenging activity and reducing power, and X. badius in lipid peroxidation inhibition, which is related with the highest amounts in phenolic compounds and tocopherols, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the enormous variety of phytochemicals present in plants, their extracts have been used for centuries in the treatment of innumerous diseases, being perceived as an invaluable source of medicines for humans. Furthermore, the combination of different plants was reported as inducing an improved effect (synergism) in comparison to the additive activity of the plants present in those mixtures. Nevertheless, information regarding the effects of plant infusions added with honey is still rather scarce. Accordingly, the aim of this study was evaluating the interaction between chestnut honey, a natural product with well-reported beneficial properties, and three medicinal plants (either as single plant or as combinations of two and three plants), with regard to their antioxidant activity and hepatotoxicity. Antioxidant activity was evaluated by comparing the results from four different assays; the hepatotoxicity was assessed in two different cell lines. Results were compared by analysis of variance and linear discriminant analysis. The addition of honey to the infusions had a beneficial result in both cases, producing a synergistic effect in all samples, except beta-carotene bleaching inhibition for artichoke+milk thistle+honey preparation and also preparations with lower hepatotoxicity, except in the case of artichoke+honey. Moreover, from discriminant linear analysis output, it became obvious that the effect of honey addition overcame that resulting from using single plant or mixed plants based infusions. Also, the enhanced antioxidant activity of infusions containing honey was convoyed by a lower hepatotoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia de Plantas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia das Plantas - MAP BIOPLANT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia de Plantas MAP - Bioplant

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently it was demonstrated that for urinary tract infections species with a lower or unproven pathogenic potential, such as Delftia tsuruhatensis and Achromobacter xylosoxidans, might interact with conventional pathogenic agents such as Escherichia coli. Here, single- and dual-species biofilms of these microorganisms were characterized in terms of microbial composition over time, the average fitness of E. coli, the spatial organization and the biofilm antimicrobial profile. The results revealed a positive impact of these species on the fitness of E. coli and a greater tolerance to the antibiotic agents. In dual-species biofilms exposed to antibiotics, E. coli was able to dominate the microbial consortia in spite of being the most sensitive strain. This is the first study demonstrating the protective effect of less common species over E. coli under adverse conditions imposed by the use of antibiotic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycotoxins are toxic secondary metabolites produced by certain moulds, being ochratoxin A (OTA) one of the most relevant. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [1]. According to the Regulation No. 1881/2006 of the European Commission, the maximum limit for OTA in wine is 2 µg/kg [2]. Therefore, the aim of this work was to know the effect of different fining agents on OTA removal, as well as their impact on white and red wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white and red wines. Trials were performed in wines artificially supplemented (at a final concentration of 10 µg/L) with OTA. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. In red wine, removals between 6-19% were obtained with egg albumin, yeast cell walls, pea protein, isinglass, gelatine, polyvinylpolypyrrolidone and chitosan. The most effective fining agents in removing OTA from red wine were an activated carbon (66%) followed again by the commercial formulation (55%), being activated carbon a well-known adsorbent of mycotoxins. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.