7 resultados para Ambient pH
em Universidade do Minho
Resumo:
The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good's buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal-buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.
Resumo:
When representing the requirements for an intended software solution during the development process, a logical architecture is a model that provides an organized vision of how functionalities behave regardless of the technologies to be implemented. If the logical architecture represents an ambient assisted living (AAL) ecosystem, such representation is a complex task due to the existence of interrelated multidomains, which, most of the time, results in incomplete and incoherent user requirements. In this chap- ter, we present the results obtained when applying process-level modeling techniques to the derivation of the logical architecture for a real industrial AAL project. We adopt a V-Model–based approach that expresses the AAL requirements in a process-level perspec- tive, instead of the traditional product-level view. Additionally, we ensure compliance of the derived logical architecture with the National Institute of Standards and Technology (NIST) reference architecture as nonfunctional requirements to support the implementa- tion of the AAL architecture in cloud contexts.
Resumo:
The increase in life expectancy with a decrease in birth rates is contributing to the ageing of the European population. This phenomenon, coupled with greater awareness of the quality of life, the need to have cost-efficient assistive care, the intention of people to live independently in their homes, and the technological developments in recent decades, have contributed to the emergence of the concept of ambient assisted living (AAL). AAL solutions aim to provide healthy and safe ageing to users through promoting independence in performing daily activities and interacting with technology, taking into consideration the deterioration of the users’ capabilities and the reduced costs of the solutions. In this chapter, AAL developments of monitoring activities of daily living (ADLs) and participation in a virtual community with the selected stakeholders are introduced, their roadmap with the expected technological developments are described, and the expected impact of these solutions on the end users of the developed solutions are discussed. This enables a real user guidance structure that represents the different needs and limitations of each user, presenting a highly structured project based on personas and possible solutions for them. The AAL4ALL Ambient Assisted Living for All (ALL4ALL) project is considered here as a case study to analyze and illustrate the ALL concepts discussed in this chapter.
Resumo:
Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300 nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.
Resumo:
Dissertação de mestrado em Genética Molecular
Resumo:
Dissertação de mestrado em Genética Molecular
Resumo:
Dissertação de mestrado em Bioengenharia