2 resultados para Aluminium-pillared clay

em Universidade do Minho


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of masonry elements under in-plane and out-of-plane loads can be improved through the application of strengthening systems based on reinforcing overlays. After strengthening, the transition region between the original substrate and the strengthening layer is especially stressed, and premature failure of the strengthened masonry is reached if insufficient interfacial capacity is assured. Therefore, the assessment of the mechanical behaviour of the interface is critical to the development of the masonry strengthening system based on the application of strengthening overlays. In this research a method for the characterization of the interface behaviour between two different materials, a polypropylene fibre reinforced mortar (PFRM) and a ceramic brick used for masonry construction is presented. Direct shear tests were carried out in couplet specimens. Due to the orthotropic nature of the bricks surface, the shear load was applied along three different directions in order to perform an overall estimation of the interface behaviour. The peak and residual shear stresses, as well as the failure modes, were obtained at different levels of the normal stress. Based on these experimental results constitutive laws were assessed for the simulation of the interface mechanical behaviour based on the Mohr and Mohr-Coulomb failure criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ternary aluminium oxynitride (AlNxOy) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlNx and AlOy and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlNxOy thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlOy and AlNx systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N2 and/or O2) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group.