3 resultados para African philology.
em Universidade do Minho
Resumo:
Mitochondrial DNA (mtDNA) haplogroup L2 originated in Western Africa but is nowadays spread across the entire continent. L2 movements were previously postulated to be related to the Bantu expansion, but L2 expansions eastwards probably occurred much earlier. By reconstructing the phylogeny of L2 (44 new complete sequences) we provide insights on the complex net of within-African migrations in the last 60 thousand years (ka). Results show that lineages in Southern Africa cluster with Western/Central African lineages at a recent time scale, whereas, eastern lineages seem to be substantially more ancient. Three moments of expansion from a Central African source are associated to L2: (1) one migration at 70-50 ka into Eastern or Southern Africa, (2) postglacial movements (15-10 ka) into Eastern Africa; and (3) the southward Bantu Expansion in the last 5 ka. The complementary population and L0a phylogeography analyses indicate no strong evidence of mtDNA gene flow between eastern and southern populations during the later movement, suggesting low admixture between Eastern African populations and the Bantu migrants. This implies that, at least in the early stages, the Bantu expansion was mainly a demic diffusion with little incorporation of local populations.
Resumo:
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.
Resumo:
The various genetic systems (mitochondrial DNA, the Y-chromosome and the genome-wide autosomes) indicate that Africa is the most genetically diverse continent in the world and the most likely place of origin for anatomically modern humans. However, where in Africa modern humans arose and how the current genetic makeup within the continent was shaped is still open to debate. Here, we summarize the debate and focus especially on the maternally inherited mitochondrial DNA (mtDNA) and a recently revised chronology for the African mtDNA tree. We discuss the possible origin of modern humans in southern, eastern or Central Africa; the possibility of a migration from southern to eastern Africa more than 100 ka, carrying lineages within mtDNA haplogroup L0; the evidence for a climate-change-mediated population expansion in eastern Africa involving mtDNA haplogroup L3, leading to the “out-of-Africa” migration around 70–60 ka; the re-population of North Africa from the Near East around 40–30 ka suggested by mtDNA haplogroups U6 and M1; the evidence for population expansions and dispersals across the continent at the onset of the Holocene ; and the impact of the Bantu dispersals in Central, eastern and southern Africa within the last few millennia.