7 resultados para Active power loss
em Universidade do Minho
Resumo:
This paper presents the proposal of a three phase current source shunt active power filter (CS-SAPF) with photovoltaic grid interface. The proposed system combines the compensation of reactive power and harmonics with the injection of energy from a solar photovoltaic array into the electrical power grid. The proposed equipment presents the advantage of giving good use to the current source inverter, even when the solar photovoltaic array is not producing energy. The paper describes the control system of the CS SAPF, the energy injection control strategy, and the current harmonics and power factor compensation strategy. Simulation results to assess the performance of the proposed system are also presented.
Resumo:
This paper presents a comparison between three switching techniques that can be used in three-phase four-wire Shunt Active Power Filters (SAPFs). The implemented switching techniques are: Periodic-Sampling (PS), Triangular Carrier Pulse-Width Modulation (TC-PWM) and Space Vector PWM (SVPWM). The comparison between them is made in terms of the compensated currents THD%, implementation complexity, necessary CPU time and SAPF efficiency. To perform this comparison are presented and analyzed several experimental results, obtained with a 20 kVA Shunt Active Power Filter prototype, specially developed for this purpose. The control system of the developed SAPF is based in the p-q Theory with a grid synchronization algorithm p-PLL.
Resumo:
This paper presents a single-phase Series Active Power Filter (Series APF) for mitigation of the load voltage harmonic content, while maintaining the voltage on the DC side regulated without the support of a voltage source. The proposed series active power filter control algorithm eliminates the additional voltage source to regulate the DC voltage, and with the adopted topology it is not used a coupling transformer to interface the series active power filter with the electrical power grid. The paper describes the control strategy which encapsulates the grid synchronization scheme, the compensation voltage calculation, the damping algorithm and the dead-time compensation. The topology and control strategy of the series active power filter have been evaluated in simulation software and simulations results are presented. Experimental results, obtained with a developed laboratorial prototype, validate the theoretical assumptions, and are within the harmonic spectrum limits imposed by the international recommendations of the IEEE-519 Standard.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
Doctoral Programme in Telecommunication - MAP-tele
Resumo:
This paper presents a model predictive current control applied to a proposed single-phase five-level active rectifier (FLAR). This current control strategy uses the discrete-time nature of the active rectifier to define its state in each sampling interval. Although the switching frequency is not constant, this current control strategy allows to follow the reference with low total harmonic distortion (THDF). The implementation of the active rectifier that was used to obtain the experimental results is described in detail along the paper, presenting the circuit topology, the principle of operation, the power theory, and the current control strategy. The experimental results confirm the robustness and good performance (with low current THDF and controlled output voltage) of the proposed single-phase FLAR operating with model predictive current control.