14 resultados para Activated mixtures
em Universidade do Minho
Resumo:
Recent research has proved the potential of alkaline activated fly-ash for soil stabilisation. However, such studies have not focused on the link between financial, mechanical and environmental aspects of this solution, but only on their absolute mechanical properties. The present paper characterises the mechanical behaviour of a large spectrum of activator-ash-soil combinations used to build jet mixing columns, analysing also the cost and CO2 (eq) emissions. The concern with these two vectors forced a decrease in the quantity of stabilising agent added to the soil, relatively to previous research, and the effects of such low quantities have not yet been published. However, the results clearly showed a significant improve in strength, still well above the average values expected when improving the stressstrain behaviour of a weak soil. Uniaxial compressive strength tests were used to assess the effects of the fly-ash percentage, the alkalieash ratio and the water content. The carbon calculator recently developed by the European Federation of Foundation Contractors and the Deep Foundations Institute was used to quantify the CO2 (eq) emissions associated with this technique. The financial cost was estimated based on the experience of a major Portuguese contractor. For comparison purposes, soil cement mixtures were also analysed, using similar conditions and tools used for the soil-ash analysis. Results showed that the cement and ash solutions are very similar in terms of overall performance, with some advantage of the former regarding financial cost, and a significant advantage of the latter regarding the CO2 (eq) emissions. This new grout, although it is in an embryonic stage, it has the potential for broader developments in the field.
Resumo:
Increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials mitigates heat loss in buildings, therefore minimising heat energy needs. In recent years, several papers were published on the subject of foam alkali-activated cements with enhanced thermal conductivity. However, on those papers cost analysis was strangely avoided. This paper presents experimental results on one-part alkali-activated cements. It also includes global warming potential assessment and cost analysis. Foam one-part alkali-activated cements cost simulations considering two carbon dioxide social costs scenarios are also included. The results show that one-part alkali-activated cements mixtures based on 26%OPC + 58.3%FA + 8%CS + 7.7%CH and 3.5% hydrogen peroxide constitute a promising cost-efficient (67 euro/m3), thermal insulation solution for floor heating systems. This mixture presents a low global warming potential of 443 KgCO2eq/m3. The results confirm that in both carbon dioxide social cost scenarios the mixture 26 OPC + 58.3 FA + 8 CS + 7.7 CH with 3.5% hydrogen peroxide foaming agent is still the most cost efficient.
Resumo:
The reuse of recycled concrete aggregates in new hot-mix asphalt can be a more sustainable method of production, but these mixtures may need a heat treatment before compaction to improve their water sensitivity performance. A direct consequence of this treatment is an increase in the hot-mix asphalt resilient modulus. The aim of this paper is to analyse the effect of ageing on the stiffness of asphalt mixtures with different amounts of recycled concrete aggregates, before and after a heat treatment, which was analysed through the assessment of its bitumen properties. Moreover, this paper also aims to analyse whether the rolling thin-film oven test is able to simulate the ageing effect of the heat treatment. In the laboratory work, a paving grade bitumen B50/70 has been used to produce asphalt mixtures with 0% and 30% recycled concrete aggregates, and the bitumen was later characterised (using penetration, softening point, dynamic viscosity and dynamic shear rheometer tests) in various situations, such as when using virgin bitumen, short-term aged bitumen, aged bitumen after heat treatment (simulated with 4 h of rolling thin-film oven test) and bitumen samples recovered from asphalt mixtures with different production mixes (0% and 30% recycled concrete aggregate) and heat treatment conditions (0 and 4 h of curing time in the oven). Based on the results obtained, it could be concluded that the ageing resulting from the heat treatment is the primary cause of the hot-mix asphalt's increased stiffness, while recycled concrete aggregate content has a small influence. Moreover, it could be concluded that when there is no curing time, the recycled concrete aggregate protects the bitumen against ageing. Additionally, it could be stated that the rolling thin-film test is able to adequately simulate the ageing effect of the heat treatment. Thus, this test is useful for determining the ageing suffered by the bitumen when the recycled concrete aggregate mixture is manufactured using a heat treatment.
Resumo:
The use of sustainable solutions in construction is not just an option, but is increasingly becoming a need of the Society. Thus, nowadays the recycling of waste materials is a growing technology that needs to be continuously improved, namely by researching new solutions for waste valorisation and by increasing the amount of wastes reused. In the paving industry, the reuse of reclaimed asphalt (RA) is becoming common practice, but needs further research work. Thus, this study aims to increase the incorporation of RA and other waste materials in the production of recycled asphalt mixtures in order to improve their mechanical, environmental and economic performance. Recycled mixtures with 50% RA were analysed in this study, including: i) RA selection, preparation and characterization; ii) incorporation of other waste materials as binder additives or modifiers, like used motor oil (UMO) and waste high density polyethylene (HDPE); iii) production of different mixtures (without additives; with UMO; with UMO and HDPE) and comparison of their performance in order to assess the main advantages of each solution. With this study it was concluded that up to 7.5 % of UMO and 4.0 % of HDPE can be used in a new modified binder for asphalt mixtures with 50 % of RA, which have excellent properties concerning the rutting with WTS = 0.02 mm/103 cycles, the fatigue resistance with ε6 = 160.4, and water sensitivity with an ITSR of 81.9 %.
Resumo:
Nowadays, recycling has become a very important objective for the society in the scope of a closed loop product life cycle. In recent years, new recycling techniques have been developed in the area of road pavements that allow the incorporation of high percentages of reclaimed asphalt (RA) materials in recycled asphalt mixtures. The use of foamed bitumen for production of recycled asphalt mixtures is one of those techniques, which also allows the reduction of the mixing temperatures (warm mix technology). However, it is important to evaluate if this solution can maintain or improve the performance of the resulting mixtures. Thus, the main aim of the present study is to assess the performance of warm recycled asphalt mixtures incorporating foamed bitumen as the new binder and 50% RA, in comparison with a control mixture using conventional bitumen. Four mixtures have been produced with 50% RA, one of them at typical high mixing temperatures with a conventional bitumen (control mixture) and the other three with foamed bitumen at different production temperatures. These four mixtures were tested to evaluate their compactability and water sensitivity. The laboratory test results showed that the production of recycled mixtures with foamed bitumen can be reduced by 40ºC without changing the performance of the resulting mixtures.
Resumo:
The pavement recycling allows to reuse reclaimed asphalt pavement (RAP) or other waste materials in new asphalt mixtures for road construction or rehabilitation, thus re-ducing the use of virgin materials (aggregates and bitumen). Thus, the main aim of this study is to minimize the use of natural resources through the reuse of three waste materials: HDPE, mo-tor oil and RAP. Different amounts of waste motor oil and HDPE were added to an asphalt binder with 50% aged bitumen. The best solutions to produce the modified binders (4.5 to 5.0% HDPE and 10 % waste motor oil) performed as well as a conventional bitumen although they only used 35 % of virgin bitumen. Asphalt mixtures with 50 % RAP were produced with the selected modified binders, improving some characteristics in comparison with conventional asphalt mixtures. In conclusion, these wastes can revive in new asphalt mixtures.
Resumo:
The recycling of pavements is nowadays a very important question to the road paving industry. With the objective of incorporating higher percentages of reclaimed asphalt (RA) materials in recycled asphalt mixtures, new techniques have been developed in the last years. The use of foamed bitumen is normally associated with the production of cold asphalt mixtures, which usually show lower quality standards. However, the objective of the work presented in this paper is to assess the use of foamed bitumen as the binder of warm asphalt mixtures incorporating 30% RA, which have quality standards similar to those of conventional mixtures. Thus, five mixtures have been produced with 30% RA, one of them with a conventional bitumen (control mix) and the others with foamed bitumen at different production temperatures. The mixtures were tested for compactability and water sensitivity and the results show a possible reduction of 25 ºC in the production temperatures, while the water sensitivity test results were kept close to 90 %.
Resumo:
This work compares the viscoelastic properties of an asphalt binder (70/100 pen) modified with different waste plastics and the mechanical properties of the resultant asphalt mixtures. Two different plastic wastes were used, namely recycled HDPE and EVA. Three different polymer modified binders were produced with these plastic wastes: i) 5% HDPE modified binder (P5); ii) 5% EVA modified binder (E5) and; iii) a modified binder with 4% of EVA and 2% HDPE (E4P2). Asphalt mixtures were produced with these modified binders, and their mechanical properties were analysed and compared with a conventional mixture produced with a 30/50 pen bitumen. It was possible to conclude that these recycled polymers are able to improve the mechanical performance of the asphalt mixtures used in road paving.
Resumo:
In this work four asphalt mixtures were compared in terms of mechanical characteristics. One of the mixtures (control mixture) was used as a reference to the study of three mixtures produced with reclaimed asphalt pavement (RAP). One of the recycled mixtures incorporated 30% of RAP and the other two were produced with 50% of RAP. The effect of using a rejuvenator additive (3% rejuvenator) was also evaluated in one of the mixtures with 50% of RAP.
Resumo:
This study aims to develop an innovative bitumen with large quantities of waste materials to improve asphalt mixtures performance. Different amounts of waste motor oil and waste HDPE were added to a new bitumen. The bitumen modified with 10% of waste motor oil and 5% of HDPE showed promising characteristics (high softening point temperatures and penetration slightly higher than the conventional bitumen). After the selection of the most promising modified bitumen, three asphalt mixtures were produced with different bitumens (namely conventional bitumen, commercial modified bitumen and the selected modified bitumen). Beyond that, this modified bitumen improved some mechanical characteristics of the asphalt mixture where it was used, in comparison to conventional and modified asphalt mixtures.
Resumo:
With the constant need to improve and make the production of asphalt mixtures more sustainable, new production techniques have been developed, the implementation of which implies the correct knowledge of their performance. One of the most promising asphalt production techniques is the use of foamed bitumen. However, it is essential to understand how this binder will behave when subject to the expansion process. The loss of volume of the foamed bitumen could be translated by a decay curve, which allows to determine the ideal temperature and water content added to the bitumen in order to assure adequate conditions to the mix the bitumen with the aggregates. On the present study, a conventional 160/220 pen grade bitumen was tested by using different temperatures and water contents, and it was concluded that the optimum temperature for the production of foamed bitumen (with the studied bitumen) is 150 ºC, which corresponds to a viscosity of 0.1 Pa.s. The water content mostly influence the half-life of the bitumen foam, resulting in quicker volume reductions for higher water contents.
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
The presence of mycotoxins in foodstuff is a matter of concern for food safety. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A (OTA) [1]. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. The maximum acceptable level of OTA in wines is 2.0 µg/kg according to the Commission regulation No. 1881/2006 [2]. Although, higher levels of OTA have been detected in several wine samples. In order to reduce OTA to safer levels, several oenological products can be used in wine; including activated carbons, as shown in previous experiments. Regarding this, the aim of present study was to evaluate the effectiveness of several activated carbons for reducing the amount of OTA present in white and red wines as well as to evaluate their effect on wines physicochemical characteristics. Wine samples were artificially supplemented with OTA at a final concentration of 10.0 µg/L. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. A mixture composed by gelatine, bentonite and activated carbon reduced 80% of OTA concentration in white wine. The same mixture was however less efficient in red wine, achieving only a reduction of 55%. Thereafter, the effect of activated carbon was evaluated in a red wine, achieving reductions of 66%. Considering these results more assays are being performed with other commercial activated carbons, in order to evaluate their efficiency. These results may provide valuable information for winemakers. Knowing the effect of commercial activated carbons they may choose most appropriate products to remove OTA, thus enhancing wine safety and quality.