6 resultados para ALIPHATIC POLYAMIDES

em Universidade do Minho


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-dispersed loads of finely powdered metals, metal oxides, several carbon allotropes or nanoclays are incorporated into highly porous polyamide 6 microcapsules in controllable amounts via an original one-step in situ fabrication technique. It is based on activated anionic polymerization (AAP) of ε-caprolactam in a hydrocarbon solvent performed in the presence of the respective micro- or nanosized loads. The forming microcapsules with typical diameters of 25-50 µm entrap up to 40 wt% of load. Their melt processing produces hybrid thermoplastic composites. Mechanical, electric conductivity and magnetic response measurements show that transforming of in situ loaded microcapsules into composites by melt processing (MP) is a facile and rapid method to fabricate materials with high mechanical resistance and electro-magnetic characteristics sufficient for many industrial applications. This novel concept requires low polymerization temperatures, no functionalization or compatibilization of the loads and it is easy to scale up at industrial production levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.215 M NaCl and 0.5 M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate-0.215 M NaCl system, all in 0.01 M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system change in the presence of NaCl additive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Química Medicinal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências (Especialidade em Química)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Partition behavior of eight small organic compounds and six proteins was examined in poly(ethylene glycol)-8000sodium sulfate aqueous two-phase systems containing 0.215 M NaCl and 0.5 M osmolyte (sorbitol, sucrose, TMAO) and poly(ethylene glycol)-10000sodium sulfate0.215 M NaCl system, all in 0.01 M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. The partition coefficients of all compounds examined (including proteins) were described in terms of solutesolvent interactions. The results obtained in the study show that solutesolvent interactions of nonionic organic compounds and proteins in polyethylene glycolsodium sulfate aqueous two-phase system change in the presence of NaCl additive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Anaerobic bioremediation is an important alternative for the common aerobic cleanup of subsurface petroleum-contaminated soil and water. Microbial communities involved in anaerobic oil biodegradation are scarcely studied, and only few mechanisms of anaerobic hydrocarbons degradation are described. In this work, microbial degradation of aliphatic hydrocarbons (AHC) was studied by using culture-dependent and culture-independent approaches. Hexadecane and hexadecene-degrading microbial communities were enriched under sulfate-reducing and methanogenic conditions. The microorganisms present in the enriched cultures were identified by 16S rRNA gene sequencing. (...)