3 resultados para 378.192
em Universidade do Minho
Polymer composites and blends for battery separators: State of the art, challenges and future trends
Resumo:
In lithium ion battery systems, the separator plays a key role with respect to device performance. Polymer composites and polymer blends have been frequently used as battery separators due to their suitable properties. This review presents the main issues, developments and characteristics of these polymer composites and blends for battery separator membrane applications. This review is divided into two sections regarding the composition of the materials: polymer composite materials, subdivided according to filler type, and polymer blend materials. For each category the electrolyte solutions, ionic conductivity and other relevant physical-chemical characteristics are described. This review shows the recent advances and opportunities in this area and identifies future trends and challenges.
Resumo:
Aiming at biosignal acquisition for bioelectrodes application, Ti-Ag thin films were produced by GLAD, in order to tailor their electromechanical properties. The electrical behaviour of the sculptured Ti-Ag thin films was studied with increasing annealing temperatures. The results revealed a good correlation with the set of morphological features displayed. With the increase of the vapour flux angle, a more defined structure was obtained, as well as a more porous morphology, which increased the electrical resistivity of the coatings. An important point consists in the recrystallization of Ti-Ag intermetallic phases due to the temperature increase (between 558 K and 773 K), which resulted in a sharp decrease of the electrical resistivity values.
Resumo:
Large amplitude oscillatory shear (LAOS) coupled with Fourier transform rheology (FTR) was used for the first time to characterize the large deformation behavior of selected bituminous binders at 20 C. Two polymer modified bitumens (PMB) containing recycled EVA and HDPE and two unmodified bitumens were tested with LAOS-FTR. The LAOS-FTR response of all binders was compared at same frequency, at same Deborah number (by tuning the frequency to the relaxation time of each binder) and at same phase shift angle d (by tuning the frequency to the one corresponding to d = 50 in the SAOS response of each sample). In all the approaches, LAOS-FTR results allowed to differentiate between all the nonlinear mechanical characteristics of the tested binders. All binders show LAOS-FTR patterns reminiscent from colloidal dispersions and emulsions. EVA PMB was less prone to strain-induced microstructural changes when compared to HDPE PMB which showed larger values of nonlinear FTR parameters for the range of shear strains tested in LAOS.