4 resultados para 276
em Universidade do Minho
Resumo:
The use of prestressed near surface mounted fibre reinforced polymers (NSM-FRP) has been long acknowledged to be a suitable approach to strengthen and retrofit existing reinforced concrete structures. The application of a certain amount of prestress to the FRP prior to its installation provides a number of benefits, mainly related to crack width and deflection requisites at serviceability limit state conditions. After transferring the prestress to a structural element, some of the existing cracks can be closed, decreasing the vulnerability of the element to corrosion and, a certain amount of deflection can be recovered due to the introduced negative curvature. However, these benefits can only be assured if the prestress is properly preserved over time. In this context, three series of reinforced concrete beams, in a total of 10 beams, were strengthened with a prestressed carbon FRP laminate (CFRP) and monitored for about 40 days. The data obtained from these tests is in this paper presented and analysed. The observed losses of strain in the CFRP laminate were found to be mainly located in the extremities of the bonded length, while in the central zone most of the initial strain was well-preserved over time. Additionally, the highest CFRP strain losses were observed in the first 6 to 12 days after prestress transfer, suggesting that the benefits of prestressed NSM-FRP will not be considerably lost over time.
Resumo:
Proceedings da AUTEX 2015, Bucareste, Roménia.
Resumo:
Proceedings da AUTEX 2015, Bucareste, Roménia.
Resumo:
The cyclic load triaxial test is a laboratory test that allows studying the mechanical behaviour of unbound granular materials used in base/subbase layers of road pavements. The resilient modulus and permanent strains are required as inputs in structural pavement design. This paper presents some results obtained for recycled materials (crushed concrete aggregate and blended crushed waste aggregate), with a view to promoting their use in pavement structures. Results relating to a reference material (limestone) are also presented, for comparison. All the test results discussed in this paper were obtained in variable cyclic radial pressure (VCP) tests. The tests performed (VCP) aim to study the influence of water content on the resilient modulus of recycled materials, as well as on the resistance to permanent deformation. Using the experimental data as a basis, further modelling work was carried out to establish the stresses developing in base/capping layers in typical Belgian road pavements. These numerical results allow to propose some simplifications of the stress paths applied in the testing procedures and to establish a new test protocol that also considers compaction during construction works. The results of this research work provide an excellent set of findings for the mechanical characterization of unbound base materials through the cyclic triaxial test, and contribute to a better understanding and correct application of recycled materials under geotechnical engineering background