6 resultados para 13368-028
em Universidade do Minho
Resumo:
Dissertação de mestrado em Bioinformática
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).
Resumo:
Open Display Networks have the potential to allow many content creators to publish their media to an open-ended set of screen displays. However, this raises the issue of how to match that content to the right displays. In this study, we aim to understand how the perceived utility of particular media sharing scenarios is affected by three independent variables, more specifically: (a) the locativeness of the content being shared; (b) how personal that content is and (c) the scope in which it is being shared. To assess these effects, we composed a set of 24 media sharing scenarios embedded with different treatments of our three independent variables. We then asked 100 participants to express their perception of the relevance of those scenarios. The results suggest a clear preference for scenarios where content is both local and directly related to the person that is publishing it. This is in stark contrast to the types of content that are commonly found in public displays, and confirms the opportunity that open displays networks may represent a new media for self-expression. This novel understanding may inform the design of new publication paradigms that will enable people to share media across the display networks.
Resumo:
The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.
Resumo:
Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenicassociated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. Statement of Significance The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures.
Resumo:
Background and aims: Small bowel capsule endoscopy (SBCE) allows mapping of small bowel inflammation in Crohn’s disease (CD). We aimed to assess the prognostic value of the severity of inflammatory lesions, quantified by the Lewis score (LS), in patients with isolated small bowel CD. Methods: A retrospective study was performed in which 53 patients with isolated small bowel CD were submitted to SBCE at the time of diagnosis. The Lewis score was calculated and patients had at least 12 months of follow-up after diagnosis. As adverse events we defined disease flare requiring systemic corticosteroid therapy, hospitalization and/or surgery during follow-up. We compared the incidence of adverse events in 2 patient subgroups, i.e. those with moderate or severe inflammatory activity (LS =790) and those with mild inflammatory activity (135 = LS < 790). Results: The LS was =790 in 22 patients (41.5%), while 58.5% presented with LS between 135 and 790. Patients with a higher LS were more frequently smokers (p = 0.01), males (p = 0017) and under immunosuppressive therapy (p = 0.004). In multivariate analysis, moderate to severe disease at SBCE was independently associated with corticosteroid therapy during follow-up, with a relative risk (RR) of 5 (p = 0.011; 95% confidence interval [CI] 1.5–17.8), and for hospitalization, with an RR of 13.7 (p = 0 .028; 95% CI 1.3–141.9). Conclusion: In patients with moderate to severe inflammatory activity there were higher prevalences of corticosteroid therapy demand and hospitalization during follow-up. Thus, stratifying the degree of small bowel inflammatory activity with SBCE and LS calculation at the time of diagnosis provided relevant prognostic value in patients with isolated small bowel CD.