5 resultados para 020110 Stellar Astronomy and Planetary Systems
em Universidade do Minho
Resumo:
Insoluble and fibrillar forms of a-synuclein are the major components of Lewy bodies, a hallmark of several sporadic and inherited neurodegenerative diseases known as synucleinopathies. a-Synuclein is a natural unfolded and aggregation-prone protein that can be degraded by the ubiquitin-proteasomal system and the lysosomal degradation pathways. a-Synuclein is a target of the main cellular proteolytic systems, but it is also able to alter their function further, contributing to the progression of neurodegeneration. Aging, a major risk for synucleinopathies, is associated with a decrease activity of the proteolytic systems, further aggravating this toxic looping cycle. Here, the current literature on the basic aspects of the routes for a-synuclein clearance, as well as the consequences of the proteolytic systems collapse, will be discussed. Finally, particular focus will be given to the sirtuins's role on proteostasis regulation, since their modulation emerged as a promising therapeutic strategy to rescue cells from a-synuclein toxicity. The controversial reports on the potential role of sirtuins in the degradation of a-synuclein will be discussed. Connection between sirtuins and proteolytic systems is definitely worth of further studies to increase the knowledge that will allow its proper exploration as new avenue to fight synucleinopathies.
Resumo:
Undergraduate medical education is moving from traditional disciplinary basic science courses into more integrated curricula. Integration models based on organ systems originated in the 1950s, but few longitudinal studies have evaluated their effectiveness. This article outlines the development and implementation of the Organic and Functional Systems (OFS) courses at the University of Minho in Portugal, using evidence collected over 10 years. It describes the organization of content, student academic performance and acceptability of the courses, the evaluation of preparedness for future courses and the retention of knowledge on basic sciences. Students consistently rated the OFS courses highly. Physician tutors in subsequent clinical attachments considered that students were appropriately prepared. Performance in the International Foundations of Medicine examination of a self-selected sample of students revealed similar performances in basic science items after the last OFS course and 4 years later, at the moment of graduation. In conclusion, the organizational and pedagogical approaches of the OFS courses achieve high acceptability by students and result in positive outcomes in terms of preparedness for subsequent training and long-term retention of basic science knowledge.
Resumo:
Objetivo do presente trabalho foi estudar a influência dos diferentes sistemas de fios (trama, teia de base e teia da argola) no desempenho dos tecidos de felpos, no que concerne às propriedades de absorção, capilaridade e libertação de humidade. Para este estudo usaram-se quatro tipos de combinações destes sistemas de fios, para a mesma estrutura de tecidos de felpo, na teia de base utilizou-se somente fios de Tencel®, na teia de argola e da trama varou-se a composição dos fios entre fios de algodão e de Tencel®. Os resultados obtidos demonstram que quando a utilização fios de Tencel® em qualquer dos sistemas (trama ou teia da argola) favorece a capacidade de difusão de líquidos na estrutura, a utilização de fios de algodão na teia de argola favorece a capacidade de absorção.
Resumo:
The ternary aluminium oxynitride (AlNxOy) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlNx and AlOy and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlNxOy thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlOy and AlNx systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N2 and/or O2) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group.
Resumo:
[Excert] Biocatalysis and biotransformations are environmentally friendly, and allow the development of sustainable production processes on a large scale. Thus, these processes are becoming important alternatives to conventional chemistry in the drug, biochemical, and emerging biorenewable energy industries. Biocatalysts are required to function under non-conventional conditions, such as in organic solvents, being competitive in terms of cost and efficiency. In fact, the technological utility of enzymes can be enhanced greatly by using them in the presence of organic solvents, rather than in their natural aqueous reaction media. Multiphase systems are more complex but offer a new field of possibilities. The presence of hydrophobic solvents in biocatalysis allows the conversion of poorly water soluble substrates more efficiently. The accessibility of hydrophobic substrates to enzymes or whole cells presents an interesting challenge for researchers and technologists. In this context, microemulsions are a promising tool in enzyme technology. This chapter presents an overview of the characterization of biphasic and microemulsion systems and their applications in biotransformation processes (...).