3 resultados para 005 Computer programming, programs
em Universidade do Minho
Resumo:
In the trend towards tolerating hardware unreliability, accuracy is exchanged for cost savings. Running on less reliable machines, functionally correct code becomes risky and one needs to know how risk propagates so as to mitigate it. Risk estimation, however, seems to live outside the average programmer’s technical competence and core practice. In this paper we propose that program design by source-to-source transformation be risk-aware in the sense of making probabilistic faults visible and supporting equational reasoning on the probabilistic behaviour of programs caused by faults. This reasoning is carried out in a linear algebra extension to the standard, `a la Bird-Moor algebra of programming. This paper studies, in particular, the propagation of faults across standard program transformation techniques known as tupling and fusion, enabling the fault of the whole to be expressed in terms of the faults of its parts.
Resumo:
This paper introduces the metaphorism pattern of relational specification and addresses how specification following this pattern can be refined into recursive programs. Metaphorisms express input-output relationships which preserve relevant information while at the same time some intended optimization takes place. Text processing, sorting, representation changers, etc., are examples of metaphorisms. The kind of metaphorism refinement proposed in this paper is a strategy known as change of virtual data structure. It gives sufficient conditions for such implementations to be calculated using relation algebra and illustrates the strategy with the derivation of quicksort as example.
Resumo:
About 90% of breast cancers do not cause or are capable of producing death if detected at an early stage and treated properly. Indeed, it is still not known a specific cause for the illness. It may be not only a beginning, but also a set of associations that will determine the onset of the disease. Undeniably, there are some factors that seem to be associated with the boosted risk of the malady. Pondering the present study, different breast cancer risk assessment models where considered. It is our intention to develop a hybrid decision support system under a formal framework based on Logic Programming for knowledge representation and reasoning, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate the risk of developing breast cancer and the respective Degree-of-Confidence that one has on such a happening.