48 resultados para Structural-Parametrical Optimization
Resumo:
Sandwich geometries, mainly in the form of panels and beams, are commonly applied in various transportation industries, such as aerospace, aeronautic and automotive. Sandwich geometries represent important advantages in structural applications, namely high specific stiffness, low weight, and possibility of design optimization prior to manufacturing. The aim of this paper is to uncover the influence of the number of reinforcements (ribs), and of the thickness on the mechanical behavior of all-metal sandwich panels subjected to uncoupled bending and torsion loadings. In this study, four geometries are compared. The orientation of the reinforcements and the effect of transversal ribs are also considered in this study. It is shown that the all the relations are non-linear, despite the elastic nature of the analysis in the Finite Element software ANSYS MECHANICAL APDL.
Resumo:
The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hydrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2%, 93.1%, 92.97% respectively, thus showing their feasibility to work in a real environment.
Resumo:
Lipid nanoballoons integrating multiple emulsions of the type water-in-oil-in-water enclose, at least in theory, a biomimetic aqueous-core suitable for housing hydrophilic biomolecules such as proteins, peptides and bacteriophage particles. The research effort entertained in this paper reports a full statistical 23x31 factorial design study (three variables at two levels and one variable at three levels) to optimize biomimetic aqueous-core lipid nanoballoons for housing hydrophilic protein entities. The concentrations of protein, lipophilic and hydrophilic emulsifiers, and homogenization speed were set as the four independent variables, whereas the mean particle hydrodynamic size (HS), zeta potential (ZP) and polydispersity index (PI) were set as the dependent variables. The V23x31 factorial design constructed led to optimization of the higher (+1) and lower (-1) levels, with triplicate testing for the central (0) level, thus producing thirty three experiments and leading to selection of the optimized processing parameters as 0.015% (w/w) protein entity, 0.75% (w/w) lipophilic emulsifier (soybean lecithin) and 0.50% (w/w) hydrophilic emulsifier (poloxamer 188). In the present research effort, statistical optimization and production of protein derivatives encompassing full stabilization of their three-dimensional structure, has been attempted via housing said molecular entities within biomimetic aqueous-core lipid nanoballoons integrating a multiple (W/O/W) emulsion.