50 resultados para Fire performance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium-ion battery cathodes have been fabricated by screen-printing through the development of CLiFePO4 inks. It is shown that shear thinning polymer solutions in N-methyl-2-pyrrolidone (NMP) with Newtonian viscosity above 0.4 Pa s are the best binders for formulating a cathode paste with satisfactory film forming properties. The paste shows an elasticity of the order of 500 Pa and, after shear yielding, shows an apparent viscosity of the order of 3 Pa s for shear rates corresponding to those used during screen-printing. The screen-printed cathode produced with a thickness of 26 mm shows a homogeneous distribution of the active material, conductive additive and polymer binder. The total resistance and diffusion coefficient of the cathode are 450 V and 2.5 10 16cm2 s 1, respectively. The developed cathodes show an initial discharge capacity of 48.2 mAh g 1 at 5C and a discharge value of 39.8 mAh g 1 after 50 cycles. The capacity retention of 83% represents 23% of the theoretical value (charge and/or discharge process in twenty minutes), demonstrating the good performance of the battery. Thus, the developed C-LiFePO4 based inks allow to fabricate screen-printed cathodes suitable for printed lithium-ion batteries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this paper is given to investigate the effect of different fibers on the pore pressure of fiber reinforced self-consolidating concrete under fire. The investigation on the pore pressure-time and temperature relationships at different depths of fiber reinforced self-consolidating concrete beams was carried out. The results indicated that micro PP fiber is more effective in mitigating the pore pressure than macro PP fiber and steel fiber. The composed use of steel fiber, micro PP fiber and macro PP fiber showed clear positive hybrid effect on the pore pressure reduction near the beam bottom subjected to fire. Compared to the effect of macro PP fiber with high dosages, the effect of micro PP fiber with low fiber contents on the pore pressure reduction is much stronger. The significant factor for reduction of pore pressure depends mainly on the number of PP fibers and not only on the fiber content. An empirical formula was proposed to predict the relative maximum pore pressure of fiber reinforced self-consolidating concrete exposed to fire by considering the moisture content, compressive strength and various fibers. The suggested model corresponds well with the experimental results of other research and tends to prove that the micro PP fiber can be the vital component for reduction in pore pressure, temperature as well spalling of concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on a new façade system that uses passive solutions in the search for energy efficiency. The differentials are the versatility and flexibility of the modules, which are important advantages of the system. The thermal performance of Trombe walls and glazings and the daylighting performance of glazing were the key aspects analyzed in the results. Computational simulations were accomplished for the thermal performance of different arrangements of the modules with DesignBuilder software. The glazing daylighting performance was studied by means of Ecotect and Desktop Radiance programs and compared with the transmittance curves of glazings. Occupancy profile and internal gains were fixed according to the Portuguese reality for both studies. The main characteristics considered in this research were the use of two double glazings, four different climates in Portugal and one and two Trombe walls in the façade. The results show an important reduction in the energy consumption with the use of Trombe walls and double self-cleaning glazing in the façade, which also presented better daylighting performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Optometria Avançada