61 resultados para performance constraints
Resumo:
In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in Poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.
Resumo:
The growing concerns regarding the environmental impact generated by the use of inorganic materials in different fields of application increased the interest towards products based on materials with low environmental impact. In recent years, researchers have turned their attention towards the development of materials obtained from renewable sources, easily recoverable or biodegradable at the end of use. In the field of civil structures, a few attempts have been done to replace the most common composites (e.g. carbon and glass fibers) by materials less harmful to the environment, as natural fibers. This work presents a comprehensive experimental research on the mechanical performance of natural fibers for the strengthening of masonry constructions. Flax, hemp, jute, sisal and coir fibers have been investigated both from physical and mechanical points of view. The fibers with better performance were tested together with three different matrices (two of organic nature) in order to produce composites. These experimental results represent a useful database for understanding the potentialities of natural fibers as strengthening systems.
Resumo:
The building sector is one of the Europeâ s main energy consumer, making buildings an important target for a wiser energy use, improving indoor comfort conditions and reducing the energy consumption. To achieve the European Union targets for energy consumption and carbon reductions it is crucial to act in new, but also in existing buildings, which constitute the majority of the building stock. In existing buildings, the significant improvement of their efficiency requires important investments. Therefore, costs are a major concern in the decision making process and the analysis of the cost effectiveness of the interventions is an important path in the guidance for the selection of the different renovation scenarios. The Portuguese thermal legislation considers the simple payback method for the calculations of the time for the return of the investment. However, this method does not take into consideration inflation, cash flows and cost of capital, as well as the future costs of energy and the building elements lifetime as it happens in a life cycle cost analysis. In order to understand the impact of the economic analysis method used in the choice of the renovation measures, a case study has been analysed using simple payback calculations and life cycle costs analysis. Overall results show that less far-reaching renovation measures are indicated when using the simple payback calculations which may be leading to solutions less cost-effective in a long run perspective.
Resumo:
The relevance of the building sector in the global energy use as well as in the global carbon emissions, both in the developed and developing countries, makes the improvement of the overall energy performance of existing buildings an important part of the actions to mitigate climate changes. Regardless of this potential for energy and emissions saving, large scale building renovation has been found hard to trigger, mainly because present standards are mainly focused on new buildings, not responding effectively to the numerous technical, functional and economic constraints of the existing ones. One of the common problems in the assessment of building renovation scenarios is that only energy savings and costs are normally considered, despite the fact that it has been long recognized that investment on energy efficiency and low carbon technologies yield several benefits beyond the value of saved energy which can be as important as the energy cost savings process. Based on the analysis of significant literature and several case studies, the relevance of co-benefits achieved in the renovation process is highlighted. These benefits can be felt at the building level by the owner or user (like increased user comfort, fewer problems with building physics, improved aesthetics) and should therefore be considered in the definition of the renovation measures, but also at the level of the society as a whole (like health effects, job creation, energy security, impact on climate change), and from this perspective, policy makers must be aware of the possible crossed impacts among different areas of the society for the development of public policies.
Resumo:
Scientific and technological advancements in the area of fibrous and textile materials have greatly enhanced their application potential in several high-end technical and industrial sectors including construction, transportation, medical, sports, aerospace engineering, electronics and so on. Excellent performance accompanied by light-weight, mechanical flexibility, tailor-ability, design flexibility, easy fabrication and relatively lower cost are the driving forces towards wide applications of these materials. Cost-effective fabrication of various advanced and functional materials for structural parts, medical devices, sensors, energy harvesting devices, capacitors, batteries, and many others has been possible using fibrous and textile materials. Structural membranes are one of the innovative applications of textile structures and these novel building skins are becoming very popular due to flexible design aesthetics, durability, lightweight and cost benefits. Current demand on high performance and multi-functional materials in structural applications has motivated to go beyond the basic textile structures used for structural membranes and to use innovative textile materials. Structural membranes with self-cleaning, thermoregulation and energy harvesting capability (using solar cells) are examples of such recently developed multi-functional membranes. Besides these, there exist enormous opportunities to develop wide varieties of multi-functional membranes using functional textile materials. Additionally, it is also possible to further enhance the performance and functionalities of structural membranes using advanced fibrous architectures such as 2D, 3D, hybrid, multi-layer and so on. In this context, the present paper gives an overview of various advanced and functional fibrous and textile materials which have enormous application potential in structural membranes.
Resumo:
Objetivo do presente trabalho foi estudar a influência dos diferentes sistemas de fios (trama, teia de base e teia da argola) no desempenho dos tecidos de felpos, no que concerne às propriedades de absorção, capilaridade e libertação de humidade. Para este estudo usaram-se quatro tipos de combinações destes sistemas de fios, para a mesma estrutura de tecidos de felpo, na teia de base utilizou-se somente fios de Tencel®, na teia de argola e da trama varou-se a composição dos fios entre fios de algodão e de Tencel®. Os resultados obtidos demonstram que quando a utilização fios de Tencel® em qualquer dos sistemas (trama ou teia da argola) favorece a capacidade de difusão de líquidos na estrutura, a utilização de fios de algodão na teia de argola favorece a capacidade de absorção.
Resumo:
Wireless body sensor networks (WBSNs) constitute a key technology for closing the loop between patients and healthcare providers, as WBSNs provide sensing ability, as well as mobility and portability, essential characteristics for wide acceptance of wireless healthcare technology. However, one important and difficult aspect of WBSNs is to provide data transmissions with quality of service, among other factors due to the antennas being small size and placed close to the body. Such transmissions cannot be fully provided without the assumption of a MAC protocol that solves the problems of the medium sharing. A vast number of MAC protocols conceived for wireless networks are based on random or scheduled schemes. This paper studies firstly the suitability of two MAC protocols, one using CSMA and the other TDMA, to transmit directly to the base station the signals collected continuously from multiple sensor nodes placed on the human body. Tests in a real scenario show that the beaconed TDMA MAC protocol presents an average packet loss ratio lower than CSMA. However, the average packet loss ratio is above 1.0 %. To improve this performance, which is of vital importance in areas such as e-health and ambient assisted living, a hybrid TDMA/CSMA scheme is proposed and tested in a real scenario with two WBSNs and four sensor nodes per WBSN. An average packet loss ratio lower than 0.2 % was obtained with the hybrid scheme. To achieve this significant improvement, the hybrid scheme uses a lightweight algorithm to control dynamically the start of the superframes. Scalability and traffic rate variation tests show that this strategy allows approximately ten WBSNs operating simultaneously without significant performance degradation.
Resumo:
The performance of the ATLAS muon trigger system has been evaluated with proton--proton collision data collected in 2012 at the Large Hadron Collider at a centre-of-mass energy of 8 TeV. The performance was primarily evaluated using events containing a pair of muons from the decay of Z bosons. The efficiency is measured for the single-muon trigger for a kinematic region of the transverse momentum pT between 25 and 100 GeV, with a statistical uncertainty of less than 0.01% and a systematic uncertainty of 0.6%. The performance is also compared in detail to the predictions from simulation. The efficiency was measured over a wide pT range (a few GeV to several hundred GeV) by using muons from J/ψ mesons,W bosons, and top and antitop quarks. It showed highly uniform and stable performance.
Resumo:
Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.
Resumo:
Objective: Immunosenescence and cognitive decline are common markers of the aging process. Taking into consideration the heterogeneity observed in aging processes and the recently described link between lymphocytes and cognition, we herein explored the possibility of an association between alterations in lymphocytic populations and cognitive performance. Methods: In a cohort of cognitively healthy adults (n = 114), previously characterized by diverse neurocognitive/psychological performance patterns, detailed peripheral blood immunophenotyping of both the innate and adaptive immune systems was performed by flow cytometry. Results: Better cognitive performance was associated with lower numbers of effector memory CD4(+) T cells and higher numbers of naive CD8(+) T cells and B cells. Furthermore, effector memory CD4(+) T cells were found to be predictors of general and executive function and memory, even when factors known to influence cognitive performance in older individuals (e.g., age, sex, education, and mood) were taken into account. Conclusions: This is the first study in humans associating specific phenotypes of the immune system with distinct cognitive performance in healthy aging.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
Currently, the quality of the Indonesian national road network is inadequate due to several constraints, including overcapacity and overloaded trucks. The high deterioration rate of the road infrastructure in developing countries along with major budgetary restrictions and high growth in traffic have led to an emerging need for improving the performance of the highway maintenance system. However, the high number of intervening factors and their complex effects require advanced tools to successfully solve this problem. The high learning capabilities of Data Mining (DM) are a powerful solution to this problem. In the past, these tools have been successfully applied to solve complex and multi-dimensional problems in various scientific fields. Therefore, it is expected that DM can be used to analyze the large amount of data regarding the pavement and traffic, identify the relationship between variables, and provide information regarding the prediction of the data. In this paper, we present a new approach to predict the International Roughness Index (IRI) of pavement based on DM techniques. DM was used to analyze the initial IRI data, including age, Equivalent Single Axle Load (ESAL), crack, potholes, rutting, and long cracks. This model was developed and verified using data from an Integrated Indonesia Road Management System (IIRMS) that was measured with the National Association of Australian State Road Authorities (NAASRA) roughness meter. The results of the proposed approach are compared with the IIRMS analytical model adapted to the IRI, and the advantages of the new approach are highlighted. We show that the novel data-driven model is able to learn (with high accuracy) the complex relationships between the IRI and the contributing factors of overloaded trucks
Resumo:
The cyclic load triaxial test is a laboratory test that allows studying the mechanical behaviour of unbound granular materials used in base/subbase layers of road pavements. The resilient modulus and permanent strains are required as inputs in structural pavement design. This paper presents some results obtained for recycled materials (crushed concrete aggregate and blended crushed waste aggregate), with a view to promoting their use in pavement structures. Results relating to a reference material (limestone) are also presented, for comparison. All the test results discussed in this paper were obtained in variable cyclic radial pressure (VCP) tests. The tests performed (VCP) aim to study the influence of water content on the resilient modulus of recycled materials, as well as on the resistance to permanent deformation. Using the experimental data as a basis, further modelling work was carried out to establish the stresses developing in base/capping layers in typical Belgian road pavements. These numerical results allow to propose some simplifications of the stress paths applied in the testing procedures and to establish a new test protocol that also considers compaction during construction works. The results of this research work provide an excellent set of findings for the mechanical characterization of unbound base materials through the cyclic triaxial test, and contribute to a better understanding and correct application of recycled materials under geotechnical engineering background
Resumo:
One of the authors (S.M.) acknowledges Direction des Relations Extérieures of Ecole Polytechnique for financial support.