34 resultados para Market capture, queuing, ant colony optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suitability of a total-length-based, minimum capture-size and different protection regimes was investigated for the gooseneck barnacle Pollicipes pollicipes shellfishery in N Spain. For this analysis, individuals that were collected from 10 sites under different fishery protection regimes (permanently open, seasonally closed, and permanently closed) were used. First, we applied a non-parametric regression model to explore the relationship between the capitulum Rostro-Tergum (RT) size and the Total Length (TL). Important heteroskedastic disturbances were detected for this relationship, demon- strating a high variability of TL with respect to RT. This result substantiates the unsuitability of a TL-based minimum size by means of a mathematical model. Due to these disturbances, an alternative growth- based minimum capture size of 26.3 mm RT (23 mm RC) was estimated using the first derivative of a Kernel-based non-parametric regression model for the relationship between RT and dry weight. For this purpose, data from the permanently protected area were used to avoid bias due to the fishery. Second, the size-frequency distribution similarity was computed using a MDS analysis for the studied sites to evaluate the effectiveness of the protection regimes. The results of this analysis indicated a positive effect of the permanent protection, while the effect of the seasonal closure was not detected. This result needs to be interpreted with caution because the current harvesting based on a potentially unsuitable mini- mum capture size may dampen the efficacy of the seasonal protection regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NIPE WP 04/ 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Bioethanol from lignocellulosic materials (LCM), also called second generation bioethanol, is considered a promising alternative to first generation bioethanol. An efficient production process of lignocellulosic bioethanol involves an effective pretreatment of LCM to improve the accessibility of cellulose and thus enhance the enzymatic saccharification. One interesting approach is to use the whole slurry from treatment, since allows economical and industrial benefits: washing steps are avoided, water consumption is lower and the sugars from liquid phase can be used, increasing ethanol concentration [1]. However, during the pretreatment step some compounds (such as furans, phenolic compounds and weak acids) are produced. These compounds have an inhibitory effect on the microorganisms used for hydrolysate fermentation [2]. To overcome this, the use of a robust industrial strain together with agro-industrial by-products as nutritional supplementation was proposed to increase the ethanol productivities and yields. (...)