43 resultados para GUIDED TISSUE REGENERATION
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais.
Resumo:
A novel approach for tissue engineering applications based on the use of magnetoelectric materials is presented. This work proves that magnetoelectric Terfenol-D/poly(vinylidene fluoride-co-trifluoroethylene) composites are able to provide mechanical and electrical stimuli to MC3T3-E1 pre-osteoblast cells and that those stimuli can be remotely triggered by an applied magnetic field. Cell proliferation is enhanced up to 25% when cells are cultured under mechanical (up to 110 ppm) and electrical stimulation (up to 0.115 mV), showing that magnetoelectric cell stimulation is a novel and suitable approach for tissue engineering allowing magnetic, mechanical and electrical stimuli.
Resumo:
Gold nanorods (AuNRs) have emerged as an exceptional nanotool for a myriad of applications ranging from cancer therapy to tissue engineering. However, their surface modification with biocompatible and stabilizing biomaterials is crucial to allow their use in a biological environment. Herein, low-acyl gellan gum (GG) was used to coat AuNRs surface, taking advantage of its stabilizing, biocompatible and gelling features. The layer-by-layer based strategy implied the successive deposition of poly(acrylic acid), poly(allylamine hydrochloride) and GG, which allowed the formation of a GG hydrogel-like shell with 7 nm thickness around individual AuNRs. Stability studies in a wide range of pH and salt concentrations showed that the polysaccharide coating can prevent AuNRs aggregation. Moreover, a reversible pH-responsive feature of the nanoparticles was observed. Cytocompatibility and osteogenic ability of GG-coated AuNRs was also addressed. After 14 days of culturing within SaOS-2, an osteoblast-like cell line, in vitro studies revealed that AuNRs-GG exhibit no cytotoxicity, were internalized by the cells and localized inside lysosomes. AuNRs-GG combined with osteogenic media enhanced the mineralization capacity two-fold, as compared to cells exposed to osteogenic media alone. The proposed system has shown interesting features for osteogenesis, and further insights might be relevant for drug delivery, tissue engineering and regenerative medicine.
Resumo:
Tese de Doutoramento em Ciências (Especialidade de Física)
Resumo:
Hyaluronan (HA) shows promise for detecting cancerous change in pleural effusion and urine. However, there is uncertainty about the localization of HA in tumor tissue and its relationship with different histological types and other components of the extracellular matrix, such as angiogenesis. We evaluated the association between HA and degree of malignancy through expression in lung tumor tissue and sputum. Tumoral tissue had significantly increased HA compared to normal tissue. Strong HA staining intensity associated with cancer cells was significant in squamous cell carcinoma compared to adenocarcinoma and large cell carcinoma. A significant direct association was found between tumors with a high percentage of HA and MVD (microvessel density) in tumoral stroma. Similarly significant was the direct association between N1 tumors and high levels of HA in cancer cells. Cox multivariate analysis showed significant association between better survival and low HA. HA increased in sputum from lung cancer patients compared to cancer-free and healthy volunteers and a significant correlation was found between HA in sputum and HA in cancer tissue. Localization of HA in tumor tissue was related to malignancy and reflected in sputum, making this an emerging factor for an important diagnostic procedure in patients suspected to have lung cancer. Further study in additional patients in a randomized prospective trial is required to finalize these results and to validate our quantitative assessment of HA, as well as to couple it to gold standard sputum cytology.
Resumo:
Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of k-carrageenan hydrogels for the delivery of stem cells obt ained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation met hod and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v k-carrageenan solution at a cell density of 5 10 6 cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that k-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mec hanical analysis demonstrated an increase in stiffness and viscoelastic properties of k-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that k-carrageenan exhibits properties t hat enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects.
Resumo:
Publicado em "Journal of tissue engineering and regenerative medicine". Vol. 8, suppl. s1 (2014)
Resumo:
prova tipográfica / uncorrected proof
Resumo:
Despite the vast investigation and the large amount of products already available in the market to treat the different bone defects there is still a growing need to develop more advanced and complex therapeutic strategies. In this context, a mixture of Marine Hydroxyapatite-Fluorapatite:Collagen (HA-FP:ASC) seems to be a promising solution to overcome these bone defects, specifically, dental defects. HA-FP particles (20–63 μm) were obtained through pyrolysis (950°C, 12 h) of shark teeth (Isurus oxyrinchus, P. glauca), and Type I collagen was isolated from Prionace glauca skin as previously described (1). After the steps of purification, collagen was solubilized in 0.5 M acetic acid and HA-FP added producing three different formulations: were produced, 30:70, 50:50 and 70:30 of HA-FP:ASC, respectively. EDC/NHS and HMDI binding agents were used to stabilize the produced scaffolds. Mechanical properties were evaluated by compression tests. SEM analysis allowed observing the mineral deposition, after immersion in simulated body fluid and also permitted to evaluate how homogenous was the distribution of HA-FP in the different scaffold formulations, also confirmed by μ-CT assay. It was readily visible by Cytotoxicity and life/dead CLSM assays that cells were able to adhere and proliferate in the produced scaffolds. Scaffolds crosslinked with EDC/NHS showed lower cytotoxicity, being the ones chosen for further cellular evaluation.
Resumo:
Personalized tissue engineering and regenerative medicine (TERM) therapies propose patient-oriented effective solutions, considering individual needs. Cell-based therapies, for example, may benefit from cell sources that enable easier autologous set-ups or from recent developments on IPS cells technologies towards effective personalized therapeutics. Furthermore, the customization of scaffold materials to perfectly fit a patientâ s tissue defect through rapid prototyping technologies, also known as 3D printing, is now a reality. Nevertheless, the timing to expand cells or to obtain functional in vitrotissue substitutes prior to implantation prevents advancements towards routine use upon patient´s needs. Thus, personalized therapies also anticipate the importance of creating off-the-shelf solutions to enable immediately available tissue engineered products. This paper reviews the main recent developments and future challenges to enable personalized TERM approaches and to bring these technologies closer to clinical applications.
Resumo:
Ideal candidates for the repair of robust biological tissues should exhibit diverse features such as biocompatibility, strength, toughness, self-healing ability and a well-defined structure. Among the available biomaterials, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, are promising for Tissue Engineering purposes as result of their high resemblance with native extracellular matrix. However, these polymeric structures often exhibit a poor mechanical behavior, hampering their use in load-bearing applications. During the last years, several efforts have been made to create new strategies and concepts to fabricate strong and tough hydrogels. Although it is already possible to shape the mechanical properties of artificial hydrogels to mimic biotissues, critical issues regarding, for instance, their biocompatibility and hierarchical structure are often neglected. Therefore, this review covers the structural and mechanical characteristics of the developed methodologies to toughen hydrogels, highlighting some pioneering efforts employed to combine the aforementioned properties in natural-based hydrogels.
Resumo:
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.