57 resultados para Fatigue. Composites. Modular Network. S-N Curves Probability. Weibull Distribution
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
Polymer blend membranes have been obtained consisting of a hydrophilic and a hydrophobic polymers distributed in co-continuous phases. In order to obtain stable membranes in aqueous environments, the hydrophilic phase is formed by a poly(hydrohyethyl acrylate), PHEA, network while the hydrophobic phase is formed by poly(vinylidene fluoride-co-trifluoroethylene) P(VDF-TrFE). To obtain the composites, in a first stage, P(VDF-TrFE) is blended with poly(ethylene oxyde) (PEO), the latter used as sacrificial porogen. P(VDF-TrFE)/PEO blend membranes were prepared by solvent casting at 70° followed by cooling to room temperature. Then PEO is removed from the membrane by immersion in water obtaining a P(VDF-TrFE) porous membrane. After removing of the PEO polymer, a P(VDF-TrFE) membrane results in which pores are collapsed. Nevertheless the pores reopen when a mixture of hydroxethyl acrylate (HEA) monomer, ethyleneglycol dimethacrylate (as crosslinker) and ethanol (as diluent) is absorbed in the membrane and subsequent polymerization yields hybrid hydrophilic/hydrophobic membranes with controlled porosity. The membranes are thus suitable for lithium-ion battery separator membranes and/or biostable supports for cell culture in biomedical applications.
Resumo:
Polymer based scintillator composites have been produced by combining polystyrene (PS) and Gd2O3:Eu3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd2O3:Eu3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1wt.% of 2,5 dipheniloxazol (PPO) and 0.01wt.% of (1,4-bis(2-(5-phenioxazolil))-benzol (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e. the measured intensity of the output visible radiation, under X-ray irradiation. Whereas increasing scintillator filler concentration (from 0.25wt.% to 7.5wt.%) increases scintillator light yield, decreases the optical transparency of the composite. The addition of PPO and POPOP, strongly increased the overall 2 transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd2O3:Eu3+/PPO/POPOP/PS composites in 0.25 wt.% of scintillator content with fluorescence molecules is suitable for the development of innovate large area X-ray radiation detectors with huge demand from the industries.
Resumo:
The employ of vegetal fibers for textiles and composites represents a great potential in economic and social sustainable development. Some Malvaceae species are considered tropical cosmopolitans, such as from Sida genus. Several species of this genus provide excellent textile bast fibers, which are very similar in qualities to the jute textile fiber. The objective of the present study is present the physicochemical characterization of six Brazilian vegetal fibers: Sida rhombifolia L.; Sida carpinifolia L. f.; Sidastrum paniculatum (L.) Fryxell; Sida cordifolia L.; Malvastrum coromandelianum (L.) Gurck; Wissadula subpeltata (Kuntze) R.E.Fries. Respectively the two first species are from Brazilian Atlantic Forest biome and the four remaining from Brazilian Cerrado biome, despite of present in other regions of the planet. The stems of these species were retted in water at 37oC for 20 days. The fibers were tested in order to determine tensile rupture strength, tenacity, elongation, Young’s modulus, cross microscopic structure, Scanning Electronic Microscopy (SEM), regain, combustion, acid, alkali, organic solvent and cellulase effects, pH of the aqueous extract, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The obtained values were compared with those from fibers of recognized applicability in the textile industry including hemp. The results are promising in terms of their employment in thermoset and thermoplastic medium resistance composites.
Resumo:
The authors also acknowledge Centre for Textile Science and Technology (University of Minho) and FIBRENAMICS PLATFORMfor providing required conditions for this research. Sincere thanks are also due to Mr. Pedro Samuel Leite and Mr. Carlos Jesus for their kind help in sample preparation and testing.
Resumo:
The growing concerns regarding the environmental impact generated by the use of inorganic materials in different fields of application increased the interest towards products based on materials with low environmental impact. In recent years, researchers have turned their attention towards the development of materials obtained from renewable sources, easily recoverable or biodegradable at the end of use. In the field of civil structures, a few attempts have been done to replace the most common composites (e.g. carbon and glass fibers) by materials less harmful to the environment, as natural fibers. This work presents a comprehensive experimental research on the mechanical performance of natural fibers for the strengthening of masonry constructions. Flax, hemp, jute, sisal and coir fibers have been investigated both from physical and mechanical points of view. The fibers with better performance were tested together with three different matrices (two of organic nature) in order to produce composites. These experimental results represent a useful database for understanding the potentialities of natural fibers as strengthening systems.
Resumo:
Nowadays natural ventilation has gained prominence because its correct use can reduce energy consumption for cooling systems and improve thermal comfort among users. In this paper, we report on the modelling initiative, based on the wind tunnel tests that were carried out for the determination of the influence of natural ventilation in buildings. Indeed, the renewal of air in a closed environment without using an air conditioning system with mechanical elements can lead to energy savings and, in addition, provide air quality.The wind tunnel tests were carried out by varying the positioning of six ventilation modules in the façade system configuration. The modules were positioned below the window-sill (ventilated window-sill) as well as separately above and below the façade. The wind speed measurements were taken inside and outside the model for the different façades configurations to evaluate the best performance in relation to natural ventilation. The results supported the positioning of the six ventilation modules below the window-sill, forming a â ventilated window-sillâ as the most effective natural ventilation solution.
Resumo:
Wind tunnel tests are a reliable tool to determine the effect of natural ventilation on buildings. This paper presents results of wind tunnel tests conducted to evaluate the influence of ventilation modules positioning on a façade system. Modules positioning was modified, resulting in different façade configurations. The tests were carried out with the use of a model, varying the position of the ventilation modules in the façade configuration. The cases tested were six ventilation modules positioned below the window-sill (ventilated window-sill), and three ventilation modules positioned above and below the façade. The façade system proposed was movable and interchangeable so that the same basic model could be used to test the possibilities for ventilation. Wind speed measurements were taken inside and outside the model for the different façades configurations to evaluate the best performance in relation to natural ventilation. Singleâ sided and Cross ventilation were considered for wind speed measurements. Results show the use of six ventilation modules positioned below the window-sill, forming "a ventilated window-sill" is the best solution in terms of natural ventilation.
Resumo:
Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.
Resumo:
Thrombotic disorders have severe consequences for the patients and for the society in general, being one of the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a decision support system that will cater for an individual risk evaluation with respect to the surge of thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The computational framework in place will be centered on Artificial Neural Networks.
Resumo:
Concrete is the primary construction material for civil infrastructures and generally consists of cement, coarse aggregates, sand, admixtures and water. Cementitious materials are characterized by quasi-brittle behaviour and susceptible to cracking [1]. The cracking process within concrete begins with isolated nano-cracks, which then conjoin to form micro-cracks and in turn macro-cracks. Formation and growth of cracks lead to loss of mechanical performance with time and also make concrete accessible to water and other degrading agents such as CO2, chlorides, sulfates, etc. leading to strength loss and corrosion of steel rebars. To improve brittleness of concrete, reinforcements such as polymeric as well as glass and carbon fibers have been used and microfibers improved the mechanical properties significantly by delaying (but could not stop) the transformation of micro-cracks into macro forms [2]. This fact encouraged the use of nano-sized fillers in concrete to prevent the growth of nano-cracks transforming in to micro and macro forms. Nanoparticles like SiO2, Fe2O3, and TiO2 led to considerable improvement in mechanical performance and moreover, nano-TiO2 helped to remove organic pollutants from concrete surfaces [3].
Resumo:
This paper provides an overview of properties and application of natural fibre composites. Natural fibre market, merits and demerits, surface treatment techniques, properties of some recently developed natural fibre composites and applications have been discussed.
Resumo:
ISSN 19820941
Resumo:
The receiver-operating characteristic (ROC) curve is the most widely used measure for evaluating the performance of a diagnostic biomarker when predicting a binary disease outcome. The ROC curve displays the true positive rate (or sensitivity) and the false positive rate (or 1-specificity) for different cut-off values used to classify an individual as healthy or diseased. In time-to-event studies, however, the disease status (e.g. death or alive) of an individual is not a fixed characteristic, and it varies along the study. In such cases, when evaluating the performance of the biomarker, several issues should be taken into account: first, the time-dependent nature of the disease status; and second, the presence of incomplete data (e.g. censored data typically present in survival studies). Accordingly, to assess the discrimination power of continuous biomarkers for time-dependent disease outcomes, time-dependent extensions of true positive rate, false positive rate, and ROC curve have been recently proposed. In this work, we present new nonparametric estimators of the cumulative/dynamic time-dependent ROC curve that allow accounting for the possible modifying effect of current or past covariate measures on the discriminatory power of the biomarker. The proposed estimators can accommodate right-censored data, as well as covariate-dependent censoring. The behavior of the estimators proposed in this study will be explored through simulations and illustrated using data from a cohort of patients who suffered from acute coronary syndrome.