20 resultados para strategic environmental assessment
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica
Resumo:
Tau-mediated neurodegeneration is a central event in Alzheimer's disease (AD) and other tauopathies. Consistent with suggestions that lifetime stress may be a clinically-relevant precipitant of AD pathology, we previously showed that stress triggers tau hyperphosphorylation and accumulation; however, little is known about the etiopathogenic interaction of chronic stress with other AD risk factors, such as sex and aging. This study focused on how these various factors converge on the cellular mechanisms underlying tau aggregation in the hippocampus of chronically stressed male and female (middle-aged and old) mice expressing the most commonly found disease-associated Tau mutation in humans, P301L-Tau. We report that environmental stress triggers memory impairments in female, but not male, P301L-Tau transgenic mice. Furthermore, stress elevates levels of caspase-3-truncated tau and insoluble tau aggregates exclusively in the female hippocampus while it also alters the expression of the molecular chaperones Hsp90, Hsp70, and Hsp105, thus favoring accumulation of tau aggregates. Our findings provide new insights into the molecular mechanisms through which clinically-relevant precipitating factors contribute to the pathophysiology of AD. Our data point to the exquisite sensitivity of the female hippocampus to stress-triggered tau pathology.
Resumo:
Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.
Resumo:
The environmental and socio-economic importance of coastal areas is widely recognized, but at present these areas face severe weaknesses and high-risk situations. The increased demand and growing human occupation of coastal zones have greatly contributed to exacerbating such weaknesses. Today, throughout the world, in all countries with coastal regions, episodes of waves overtopping and coastal flooding are frequent. These episodes are usually responsible for property losses and often put human lives at risk. The floods are caused by coastal storms primarily due to the action of very strong winds. The propagation of these storms towards the coast induces high water levels. It is expected that climate change phenomena will contribute to the intensification of coastal storms. In this context, an estimation of coastal flooding hazards is of paramount importance for the planning and management of coastal zones. Consequently, carrying out a series of storm scenarios and analyzing their impacts through numerical modeling is of prime interest to coastal decision-makers. Firstly, throughout this work, historical storm tracks and intensities are characterized for the northeastern region of United States coast, in terms of probability of occurrence. Secondly, several storm events with high potential of occurrence are generated using a specific tool of DelftDashboard interface for Delft3D software. Hydrodynamic models are then used to generate ensemble simulations to assess storms' effects on coastal water levels. For the United States’ northeastern coast, a highly refined regional domain is considered surrounding the area of The Battery, New York, situated in New York Harbor. Based on statistical data of numerical modeling results, a review of the impact of coastal storms to different locations within the study area is performed.
Resumo:
Dissertação de mestrado em Molecular Genetics