23 resultados para production processes
Resumo:
A search for the bb¯ decay of the Standard Model Higgs boson is performed with the ATLAS experiment using the full dataset recorded at the LHC in Run 1. The integrated luminosities used from pp collisions at s√=7 and 8 TeV are 4.7 and 20.3 fb−1, respectively. The processes considered are associated (W/Z)H production, where W→eν/μν, Z→ee/μμ and Z→νν. The observed (expected) deviation from the background-only hypothesis corresponds to a significance of 1.4 (2.6) standard deviations and the ratio of the measured signal yield to the Standard Model expectation is found to be μ=0.52±0.32(stat.)±0.24(syst.) for a Higgs boson mass of 125.36 GeV. The analysis procedure is validated by a measurement of the yield of (W/Z)Z production with Z→bb¯ in the same final states as for the Higgs boson search, from which the ratio of the observed signal yield to the Standard Model expectation is found to be 0.74±0.09(stat.)±0.14(syst.).
Resumo:
The production cross sections of top-quark pairs in association with massive vector bosons have been measured using data from pp collisions at s√=8 TeV. The dataset corresponds to an integrated luminosity of 20.3 fb−1 collected by the ATLAS detector in 2012 at the LHC. Final states with two, three or four leptons are considered. A fit to the data considering the tt¯W and tt¯Z processes simultaneously yields a significance of 5.0σ (4.2σ) over the background-only hypothesis for tt¯W (tt¯Z) production. The measured cross sections are σtt¯W=369+100−91 fb and σtt¯Z=176+58−52 fb. The background-only hypothesis with neither tt¯W nor tt¯Z production is excluded at 7.1σ. All measurements are consistent with next-to-leading-order calculations for the tt¯W and tt¯Z processes.
Resumo:
Olive mill wastewaters (OMW) and vinasses (VS) are effluents produced respectively by olive mills and wineries, both sectors are of great economic importance in Mediterranean countries. These effluents cause a large environmental impact, when not properly processed, due to their high concentration of phenolic compounds, COD and colour. OMW may be treated by biological processes but, in this case, a dilution is necessary, increasing water consumption. The approach here in proposed consists on the bioremediation of OMW and VS by filamentous fungi. In a screening stage, three fungi (Aspergillus ibericus, Aspergillus uvarum, Aspergillus niger) were selected to bioremediate undiluted OMW, two-fold diluted OMW supplemented with nutrients, and a mixture of OMW and VS in the proportion 1:1 (v/v). Higher reductions of phenolic compounds, colour and COD were achieved mixing both residues; with A. uvarum providing the best results. In addition, the production of enzymes was also evaluated during this bioremediation process, detecting in all cases lipolytic, proteolytic and tannase activities. A. ibericus, A. uvarum and A. niger achieved the highest value of lipase (1253.7 ± 161.2 U/L), protease (3700 ± 124.3 U/L) and tannase (284.4 ± 12.1 U/L) activities, respectively. Consequently, this process is an interesting alternative to traditional processes to manage these residues, providing simultaneously high economic products, which can be employed in the same industries.
Resumo:
The development of products from marine bioresources is gaining importance in the biotechnology sector. The global market for Marine Biotechnology products and processes was, in 2010, estimated at 2.8 billion with a cumulative annual growth rate of 510% (Børresen et al., Marine biotechnology: a new vision and strategy for Europe. Marine Board Position Paper 15. Beernem: Marine Board-ESF, 2010). Marine Biotechnology has the potential to make significant contributions towards the sustainable supply of food and energy, the solution of climate change and environmental degradation issues, and the human health. Besides the creation of jobs and wealth, it will contribute to the development of a greener economy. Thus, huge expectations anticipate the global development of marine biotechnology. The marine environment represents more than 70% of the Earths surface and includes the largest ranges of temperature, light and pressure encountered by life. These diverse marine environments still remain largely unexplored, in comparison with terrestrial habitats. Notwithstanding, efforts are being done by the scientific community to widespread the knowledge on oceans microbial life. For example, the J. Craig Venter Institute, in collaboration with the University of California, San Diego (UCSD), and Scripps Institution of Oceanography have built a state-of-the-art computational resource along with software tools to catalogue and interpret microbial life in the worlds oceans. The potential application of the marine biotechnology in the bioenergy sector is wide and, certainly, will evolve far beyond the current interest in marine algae. This chapter revises the current knowledge on marine anaerobic bacteria and archaea with a role in bio-hydrogen production, syngas fermentation and bio-electrochemical processes, three examples of bioenergy production routes.
Resumo:
The agroindustrial residues including plant tissues rich in polyphenols were explored for microbial production of potent phenolics under solid state fermentation processes. The fungal strains capable of hydrolyzing tannin-rich materials were isolated from Mexican semidesert zones. These microorganisms have been employed to release potent phenolic antioxidants during the solid state fermentation of different materials (pomegranate peels, pecan nut shells, creosote bush and tar bush). This chapter includes the critical parameters for antioxidants production from selective microbes. Technical aspects of the microbial fermentation of antioxidants have also been discussed.
Resumo:
Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating chargeby reducing the come-up time (CUT) needed to reach a target temperatureand increase of the electric field applied (from 6 to 12 V cm1). Exposure of reactive free thiol groups involved in molecular unfolding of -lactoglobulin (-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm1. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Currently, prebiotics are all carbohydrates of relatively short chain length. An important group is the fructooligosaccharides, which are a special kind of prebiotics associated to their selective stimulation of the activity of certain groups of colonic bacteria that have a positive and beneficial effect on intestinal microbiota, reducing incidence of gastrointestinal infections, respiratory and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of fructooligosaccharides, such as solid-state fermentation utilizing various agroindustrial by-products. By optimizing the culture parameters, fructooligosaccharides yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of fructooligosaccharides. This paper is an overview on the results of recent studies on fructooligosacharides biosynthesis, physicochemical properties, sources, biotechnological production and applications.