41 resultados para organic-inorganic hybrid materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan and hyaluronic acid modified with catechol groups, which are the main responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The build-up of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution for 7 days is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that the constructed films promote the formation of bone-like apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Well-dispersed loads of finely powdered metals, metal oxides, several carbon allotropes or nanoclays are incorporated into highly porous polyamide 6 microcapsules in controllable amounts via an original one-step in situ fabrication technique. It is based on activated anionic polymerization (AAP) of ε-caprolactam in a hydrocarbon solvent performed in the presence of the respective micro- or nanosized loads. The forming microcapsules with typical diameters of 25-50 µm entrap up to 40 wt% of load. Their melt processing produces hybrid thermoplastic composites. Mechanical, electric conductivity and magnetic response measurements show that transforming of in situ loaded microcapsules into composites by melt processing (MP) is a facile and rapid method to fabricate materials with high mechanical resistance and electro-magnetic characteristics sufficient for many industrial applications. This novel concept requires low polymerization temperatures, no functionalization or compatibilization of the loads and it is easy to scale up at industrial production levels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to communication and technology developments, residential consumers are enabled to participate in Demand Response Programs (DRPs), control their consumption and decrease their cost by using Household Energy Management (HEM) systems. On the other hand, capability of energy storage systems to improve the energy efficiency causes that employing Phase Change Materials (PCM) as thermal storage systems to be widely addressed in the building applications. In this paper, an operational model of HEM system considering the incorporation of more than one type of PCM in plastering mortars (hybrid PCM) is proposed not only to minimize the customerâ s cost in different DRPs but also to guaranty the habitantsâ  satisfaction. Moreover, the proposed model ensures the technical and economic limits of batteries and electrical appliances. Different case studies indicate that implementation of hybrid PCM in the buildings can meaningfully affect the operational pattern of HEM systems in different DRPs. The results reveal that the customerâ s electricity cost can be reduced up to 48% by utilizing the proposed model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the research of sensors with good sensitivity and good selectivity in aqueous medium has been of great interest. Chemosensors soluble in aqueous media are very interesting, because of the importance in revealing a number of biological processes, disease states and environmental pollutions. 2,4,5-Triaryl-imidazoles are versatile compounds with application in medicine, due to their biological activity, and materials sciences, for their interesting optical properties. These properties can be tuned by careful selection of substituents at positions 2, 4 and 5: replacement of the aryl group by a heterocyclic group results in larger π-conjugated systems with improved optical properties for application in nonlinear optics, OLEDs, DNA intercalators, and chemosensors. In this communication, we report the synthesis of new phenanthroimidazoles, substituted at position 2 with (hetero)aryl groups of different electronic character, in order to evaluate their photophysical properties and chemosensory ability. The new derivatives were characterized by the usual techniques and a detailed photophysical study was undertaken. The evaluation of the compounds as fluorimetric chemosensors was carried out by performing titrations in acetonitrile and acetonitrile/water in the presence of relevant organic and inorganic anions, and of alkaline, alkaline-earth and transition metal cations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the civil engineering field, the use of the Finite Element Method has acquired a significant importance, since numerical simulations have been employed in a broad field, which encloses the design, analysis and prediction of the structural behaviour of constructions and infrastructures. Nevertheless, these mathematical simulations can only be useful if all the mechanical properties of the materials, boundary conditions and damages are properly modelled. Therefore, it is required not only experimental data (static and/or dynamic tests) to provide references parameters, but also robust calibration methods able to model damage or other special structural conditions. The present paper addresses the model calibration of a footbridge bridge tested with static loads and ambient vibrations. Damage assessment was also carried out based on a hybrid numerical procedure, which combines discrete damage functions with sets of piecewise linear damage functions. Results from the model calibration shows that the model reproduces with good accuracy the experimental behaviour of the bridge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors appreciate the collaboration of the following labs: Civitest for developing DHCC materials, PIEP for conducting VARTM process (Eng. Luis Oliveira) and Department of Civil Engineering of Minho University to perform the tests (Mr. Antonio Matos and Eng. Marco Jorge).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid Composite Plate (HCP) is a reliable recently proposed retrofitting solution for concrete structures, which is composed of a strain hardening cementitious composite (SHCC) plate reinforced with Carbon Fibre Reinforced Polymer (CFRP). This system benefits from the synergetic advantages of these two composites, namely the high ductility of SHCC and the high tensile strength of CFRPs. In the materialstructural of HCP, the ultra-ductile SHCC plate acts as a suitable medium for stress transfer between CFRP laminates (bonded into the pre-sawn grooves executed on the SHCC plate) and the concrete substrate by means of a connection system made by either chemical anchors, adhesive, or a combination thereof. In comparison with traditional applications of FRP systems, HCP is a retrofitting solution that (i) is less susceptible to the detrimental effect of the lack of strength and soundness of the concrete cover in the strengthening effectiveness; (ii) assures higher durability for the strengthened elements and higher protection to the FRP component in terms of high temperatures and vandalism; and (iii) delays, or even, prevents detachment of concrete substrate. This paper describes the experimental program carried out, and presents and discusses the relevant results obtained on the assessment of the performance of HCP strengthened reinforced concrete (RC) beams subjected to flexural loading. Moreover, an analytical approach to estimate the ultimate flexural capacity of these beams is presented, which was complemented with a numerical strategy for predicting their load-deflection behaviour. By attaching HCP to the beams’ soffit, a significant increase in the flexural capacity at service, at yield initiation of the tension steel bars and at failure of the beams can be achieved, while satisfactory deflection ductility is assured and a high tensile capacity of the CFRP laminates is mobilized. Both analytical and numerical approaches have predicted with satisfactory agreement, the load-deflection response of the reference beam and the strengthened ones tested experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to evaluate experimentally the potentialities of Hybrid Composite Plates (HCPs) technique for the shear strengthening of reinforced concrete (RC) beams that were previously subjected to intense damage in shear. HCP is a thin plate of Strain Hardening Cementitious Composite (SHCC) reinforced with Carbon Fiber Reinforced Polymer (CFRP) laminates. For this purpose, an experimental program composed of two series of beams (rectangular and T cross section) was executed to assess the strengthening efficiency of this technique. In the first step of this experimental program, the control beams, without steel stirrups, were loaded up to their shear failure, and fully unloaded. Then, these pre-damaged beams were shear strengthened by applying HCPs to their lateral faces by using a combination of epoxy adhesive and mechanical anchors. The bolts were applied with a certain torque in order to increase the concrete confinement. The obtained results showed that the increase of load carrying capacity of the damaged strengthened beams when HCPs were applied with epoxy adhesive and mechanical anchors was 2 and 2.5 times of the load carrying capacity of the corresponding reference beams (without HCPs) for the rectangular and T cross section beam series, respectively. To further explore the potentialities of the HCPs technique for the shear strengthening, the experimental tests were simulated using an advanced numerical model by a FEM-based computer program. After demonstration the good predictive performance of the numerical model, a parametric study was executed to highlight the influence of SHCC as an alternative for mortar, as well as the influence of torque level applied to the mechanical anchors, on the load carrying capacity of beams strengthened with the proposed technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovative composite materials made of continuous fibers embedded in mortar matrices have been recently received attention for externally bonded reinforcement of masonry structures. In this regards, application of natural fibers for strengthening of the repair mortars is attractive due to their low specific weight, sustainability and recycability. This paper presents experimental characterization of tensile and pull-out behavior of natural fibers embedded in two different mortar-based matrices. A lime-based and a geopolymeric-based mortar are used as sustainable and innovative matrices. The obtained experimental results and observations are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An exterior body panel solution containing a polydicyclopentadiene skin attached to an interior metallic reinforcement through adhesive bonding is being studied to be applied in the MobiCar bonnet. With this solution is expected to achieve lightness, adequate structural integrity and cost-efficiency. However, there is uncertainty regarding to the bonnet adhesiveness since different metallic materials and adhesive types are being considered for its development. Thus, in this paper, several samples are tested through shear loading with the aim of understanding the loading magnitude expected by using polydicyclopentadiene, steel DC04+ZE and aluminum alloy AW5754-H111 as substrates adhesively bonded by an epoxy or a methacrylate. Methacrylate adhesive have shown greater shear strength in all types of adhesive joints. PDCPD joints presented the highest displacements. Surface degradation was considered adequate over abrading once none strength difference was seen between the different surface treatments. Steel treated by cataphoresis has shown the highest joint interface strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The management of solid waste is a growing concern in many countries. Municipal solid waste is a major component of the total solid waste generated by society, and the composting of municipal solid waste has gained some attention even though a composting treatment for it is not yet widespread. It may not be realistic to replace large portions of these plastics with biodegradable materials, and it may be more important to separate plastics unsuitable for the composting process at the generating spots. However, for food packaging, there is still a great deal of interest in using biodegradable plastics that are difficult to sort at the generation spots. Under these circumstances, nanocomposites of biodegradable polymers as matrix and nanoparticles, that can be degraded along with organic wastes during composting could be a solution. Therefore, this chapter aims to give an overview on the biodegradability studies of bio-nanocomposites. It will focus on different polymers, nanocomposites containing different clay types and inorganic particles exposed under different environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu.g-1 and a maximum magnetoelectric coefficient of 9 mV.cm-1.Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(vinylidene fluoride-trifluoroethylene)/NaY zeolite composite membranes were prepared by solvent casting and evaluated as a suitable drug release platform through the evaluation of loading and release of ibuprofen. The membranes were characterized at the morphological, structural and mechanical levels. The 1H-NMR spectra indicate that only the membranes with 16 and 32 % of NaY were useful for IBU encapsulation and the drug release was followed by UV-Vis spectroscopy. The release profile is independent of the zeolite content and can be described by the Korsmeyer-Peppas model. The membrane with 32 % zeolite content releases more than double IBU amount when compared with the membrane with 16 % showing that zeolite content allows tailoring membrane drug release content for specific applications. The drug release platform developed in this work is suitable for other drugs and applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.