68 resultados para hybrid tool solutions
Resumo:
ETL conceptual modeling is a very important activity in any data warehousing system project implementation. Owning a high-level system representation allowing for a clear identification of the main parts of a data warehousing system is clearly a great advantage, especially in early stages of design and development. However, the effort to model conceptually an ETL system rarely is properly rewarded. Translating ETL conceptual models directly into something that saves work and time on the concrete implementation of the system process it would be, in fact, a great help. In this paper we present and discuss a hybrid approach to this problem, combining the simplicity of interpretation and power of expression of BPMN on ETL systems conceptualization with the use of ETL patterns to produce automatically an ETL skeleton, a first prototype system, which has the ability to be executed in a commercial ETL tool like Kettle.
Resumo:
This work provides analytical and numerical solutions for the linear, quadratic and exponential Phan–Thien–Tanner (PTT) viscoelastic models, for axial and helical annular fully-developed flows under no slip and slip boundary conditions, the latter given by the linear and nonlinear Navier slip laws. The rheology of the three PTT model functions is discussed together with the influence of the slip velocity upon the flow velocity and stress fields. For the linear PTT model, full analytical solutions for the inverse problem (unknown velocity) are devised for the linear Navier slip law and two different slip exponents. For the linear PTT model with other values of the slip exponent and for the quadratic PTT model, the polynomial equation for the radial location (β) of the null shear stress must be solved numerically. For both models, the solution of the direct problem is given by an iterative procedure involving three nonlinear equations, one for β, other for the pressure gradient and another for the torque per unit length. For the exponential PTT model we devise a numerical procedure that can easily compute the numerical solution of the pure axial flow problem
Resumo:
Business Intelligence (BI) can be seen as a method that gathers information and data from information systems in order to help companies to be more accurate in their decision-making process. Traditionally BI systems were associated with the use of Data Warehouses (DW). The prime purpose of DW is to serve as a repository that stores all the relevant information required for making the correct decision. The necessity to integrate streaming data became crucial with the need to improve the efficiency and effectiveness of the decision process. In primary and secondary education, there is a lack of BI solutions. Due to the schools reality the main purpose of this study is to provide a Pervasive BI solution able to monitoring the schools and student data anywhere and anytime in real-time as well as disseminating the information through ubiquitous devices. The first task consisted in gathering data regarding the different choices made by the student since his enrolment in a certain school year until the end of it. Thereafter a dimensional model was developed in order to be possible building a BI platform. This paper presents the dimensional model, a set of pre-defined indicators, the Pervasive Business Intelligence characteristics and the prototype designed. The main contribution of this study was to offer to the schools a tool that could help them to make accurate decisions in real-time. Data dissemination was achieved through a localized application that can be accessed anywhere and anytime.
Resumo:
Yarrowia lipolytica, a yeast strain with a huge biotechnological potential, capable to produce metabolites such as γ-decalactone, citric acid, intracellular lipids and enzymes, possesses the ability to change its morphology in response to environmental conditions. In the present study, a quantitative image analysis (QIA) procedure was developed for the identification and quantification of Y. lipolytica W29 and MTLY40-2P strains dimorphic growth, cultivated in batch cultures on hydrophilic (glucose and N-acetylglucosamine (GlcNAc) and hydrophobic (olive oil and castor oil) media. The morphological characterization of yeast cells by QIA techniques revealed that hydrophobic carbon sources, namely castor oil, should be preferred for both strains growth in the yeast single cell morphotype. On the other hand, hydrophilic sugars, namely glucose and GlcNAc caused a dimorphic transition growth towards the hyphae morphotype. Experiments for γ-decalactone production with MTLY40-2P strain in two distinct morphotypes (yeast single cells and hyphae cells) were also performed. The obtained results showed the adequacy of the proposed morphology monitoring tool in relation to each morphotype on the aroma production ability. The present work allowed establishing that QIA techniques can be a valuable tool for the identification of the best culture conditions for industrial processes implementation.
Resumo:
An exterior body panel solution containing a polydicyclopentadiene skin attached to an interior metallic reinforcement through adhesive bonding is being studied to be applied in the MobiCar bonnet. With this solution is expected to achieve lightness, adequate structural integrity and cost-efficiency. However, there is uncertainty regarding to the bonnet adhesiveness since different metallic materials and adhesive types are being considered for its development. Thus, in this paper, several samples are tested through shear loading with the aim of understanding the loading magnitude expected by using polydicyclopentadiene, steel DC04+ZE and aluminum alloy AW5754-H111 as substrates adhesively bonded by an epoxy or a methacrylate. Methacrylate adhesive have shown greater shear strength in all types of adhesive joints. PDCPD joints presented the highest displacements. Surface degradation was considered adequate over abrading once none strength difference was seen between the different surface treatments. Steel treated by cataphoresis has shown the highest joint interface strength.
Resumo:
PhD thesis in Bioengineering
Resumo:
Tese de Doutoramento Programa Doutoral em Engenharia Electrónica e Computadores
Resumo:
Due to the fact that different injection molding conditions tailor the mechanical response of the thermoplastic material, such effect must be considered earlier in the product development process. The existing approaches implemented in different commercial software solutions are very limited in their capabilities to estimate the influence of processing conditions on the mechanical properties. Thus, the accuracy of predictive simulations could be improved. In this study, we demonstrate how to establish straightforward processing-impact property relationships of talc-filled injection-molded polypropylene disc-shaped parts by assessing the thermomechanical environment (TME). To investigate the relationship between impact properties and the key operative variables (flow rate, melt and mold temperature, and holding pressure), the design of experiments approach was applied to systematically vary the TME of molded samples. The TME is characterized on computer flow simulation outputsanddefined bytwo thermomechanical indices (TMI): the cooling index (CI; associated to the core features) and the thermo-stress index (TSI; related to the skin features). The TMI methodology coupled to an integrated simulation program has been developed as a tool to predict the impact response. The dynamic impact properties (peak force, peak energy, and puncture energy) were evaluated using instrumented falling weight impact tests and were all found to be similarly affected by the imposed TME. The most important molding parameters affecting the impact properties were found to be the processing temperatures (melt andmold). CI revealed greater importance for the impact response than TSI. The developed integrative tool provided truthful predictions for the envisaged impact properties.
Resumo:
Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu.g-1 and a maximum magnetoelectric coefficient of 9 mV.cm-1.Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.
Resumo:
Tese de Doutoramento em Ciências da Administração
Resumo:
Poly(vinylidene fluoride-trifluoroethylene)/NaY zeolite composite membranes were prepared by solvent casting and evaluated as a suitable drug release platform through the evaluation of loading and release of ibuprofen. The membranes were characterized at the morphological, structural and mechanical levels. The 1H-NMR spectra indicate that only the membranes with 16 and 32 % of NaY were useful for IBU encapsulation and the drug release was followed by UV-Vis spectroscopy. The release profile is independent of the zeolite content and can be described by the Korsmeyer-Peppas model. The membrane with 32 % zeolite content releases more than double IBU amount when compared with the membrane with 16 % showing that zeolite content allows tailoring membrane drug release content for specific applications. The drug release platform developed in this work is suitable for other drugs and applications.
Resumo:
The Portuguese housing sector experienced a significant growth throughout the 20th century, particularly in the last quarter, after the democratic revolution in 1974. In fact, the number of buildings built between 1970 and 1990 is more than one third of the buildings actually existing in Portugal. Therefore most of them were built before the publication of the first regulation concerning the energy efficiency in buildings. Regarding this scenario, it would be expected that rehabilitation activities would represent most of the current construction activities. However, given some remaining barriers from old social policies, this situation is not observed; actually building retrofitting is the least significant sector, accentuating the degradation level of major part of the Portuguese housing stock. Several studies show that the main problems are found in the buildings envelope elements, such as roofs and façades. Based on this context, the aim of this paper is to introduce some examples of building retrofitting systems that, adapted to the Portuguese main needs and requirements may represent sustainable solutions to overcome the identified needs of Portuguese buildings' envelope.
Resumo:
Wind tunnel tests are a reliable tool to determine the effect of natural ventilation on buildings. This paper presents results of wind tunnel tests conducted to evaluate the influence of ventilation modules positioning on a façade system. Modules positioning was modified, resulting in different façade configurations. The tests were carried out with the use of a model, varying the position of the ventilation modules in the façade configuration. The cases tested were six ventilation modules positioned below the window-sill (ventilated window-sill), and three ventilation modules positioned above and below the façade. The façade system proposed was movable and interchangeable so that the same basic model could be used to test the possibilities for ventilation. Wind speed measurements were taken inside and outside the model for the different façades configurations to evaluate the best performance in relation to natural ventilation. Singleâ sided and Cross ventilation were considered for wind speed measurements. Results show the use of six ventilation modules positioned below the window-sill, forming "a ventilated window-sill" is the best solution in terms of natural ventilation.
Resumo:
Tese de Doutoramento Ciência e Engenharia de Polímeros e Compósitos.
Resumo:
Parchment stands for a multifaceted material made from animal skin, which has been used for centuries as a writing support or as bookbinding. Due to the historic value of objects made of parchment, understanding their degradation and their condition is of utmost importance to archives, libraries and museums, i.e., the assessment of parchment degradation is mandatory, although it is hard to do with traditional methodologies and tools for problem solving. Hence, in this work we will focus on the development of a hybrid decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate Parchment Degradation and the respective Degree-of-Confidence that one has on such a happening.