18 resultados para high potential
Resumo:
Preprint submitted to International Journal of Solids and Structures. ISSN 0020-7683
Resumo:
Invasive cervical cancer (ICC) is the third most frequent cancer among women worldwide and is associated with persistent infection by carcinogenic human papillomaviruses (HPVs). The combination of large populations of viral progeny and decades of sustained infection may allow for the generation of intra-patient diversity, in spite of the assumedly low mutation rates of PVs. While the natural history of chronic HPVs infections has been comprehensively described, within-host viral diversity remains largely unexplored. In this study we have applied next generation sequencing to the analysis of intra-host genetic diversity in ten ICC and one condyloma cases associated to single HPV16 infection. We retrieved from all cases near full-length genomic sequences. All samples analyzed contained polymorphic sites, ranging from 3 to 125 polymorphic positions per genome, and the median probability of a viral genome picked at random to be identical to the consensus sequence in the lesion was only 40%. We have also identified two independent putative duplication events in two samples, spanning the L2 and the L1 gene, respectively. Finally, we have identified with good support a chimera of human and viral DNA. We propose that viral diversity generated during HPVs chronic infection may be fueled by innate and adaptive immune pressures. Further research will be needed to understand the dynamics of viral DNA variability, differentially in benign and malignant lesions, as well as in tissues with differential intensity of immune surveillance. Finally, the impact of intralesion viral diversity on the long-term oncogenic potential may deserve closer attention.
Resumo:
We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.