24 resultados para hierarchical rating method


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cartilage tissue is a complex nonlinear, viscoelastic, anisotropic, and multiphasic material with a very low coefficient of friction, which allows to withstand millions of cycles of joint loading over decades of wear. Upon damage, cartilage tissue has a low self-reparative capacity due to the lack of neural connections, vascularization, and a latent pool of stem/chondroprogenitor cells. Therefore, the healing of articular cartilage defects remains a significant clinical challenge, affecting millions of people worldwide. A plethora of biomaterials have been proposed to fabricate devices for cartilage regeneration, assuming a wide range of forms and structures, such as sponges, hydrogels, capsules, fibers, and microparticles. In common, the fabricated devices were designed taking in consideration that to fully achieve the regeneration of functional cartilage it is mandatory a well-orchestrated interplay of biomechanical properties, unique hierarchical structures, extracellular matrix (ECM), and bioactive factors. In fact, the main challenge in cartilage tissue engineering is to design an engineered device able to mimic the highly organized zonal architecture of articular cartilage, specifically its spatiomechanical properties and ECM composition, while inducing chondrogenesis, either by the proliferation of chondrocytes or by stimulating the chondrogenic differentiation  of stem/chondro-progenitor cells. In this chapter we present the recent advances in the development of innovative and complex biomaterials that fulfill the required structural key elements for cartilage regeneration. In particular, multiphasic, multiscale, multilayered, and hierarchical strategies composed by single or multiple biomaterials combined in a welldefined structure will be addressed. Those strategies include biomimetic scaffolds mimicking the structure of articular cartilage or engineered scaffolds as models of research to fully understand the biological mechanisms that influence the regeneration of cartilage tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (ξ), the cross-sectional polymer chain radius (Rc) and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stem cell niche organization and dynamics provide valuable cues for the development of mimetic environments that could have potential to stimulate the regenerative process. We propose the use of biodegradable biomaterials to produce closed miniaturised structures able to encapsulate different cell types or bioactive molecules. In particular, capsules are fabricated using the so-called layer-by-layer technology, where the consecutive (nano-sized) layers are well stabilized by electrostatic interactions or other weak forces. Using alginate-based spherical templates containing cells or other elements (e.g. proteins, magnetic nanoparticles, microparticles) it is possible to produce liquefied capsules that may entrap the entire cargo under mild conditions. The inclusion of liquefied micropcapsules may be used to produce hierarchical compartmentalised systems for the delivery of bioactive agents. The presence of solid microparticles inside such capsules offers adequate surface area for adherent cell attachment increasing the biological performance of these hierarchical systems, while maintain both permeability and injectability. We demonstrated that the encapsulation of distinct cell types (including mesenchymal stem cells and endothelial cells) enhances the osteogenic capability of this system, that could be useful in bone tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchical polymeric carriers with high encapsulation efficiencies are fabricated via a biocompatible strategy developed using superhydrophobic (SH) surfaces. The carries are obtained by the incorporation of cell/BSA-loaded dextran-methacrylate (DEXT-MA) microparticles into alginate (ALG) macroscopic beads. Engineered devices like these are expected to boost the development of innovative and customizable systems for biomedical and biotechnological purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Educação Especial (área de especialização em Dificuldades de Aprendizagem Específicas)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Risk management is of paramount importance in the success of tunnelling works and is linked to the tunnelling method and to the constraints of the works. Sequencial Excavation Method (SEM) and Tun-nel Boring Machine (TBM) method have been competing for years. This article, part of a wider study on the influence of the â Safety and Healthâ criterion in the choice of method, reviews the existing literature about the criteria usually employed to choose the tunnelling method and on the criterion â Safety and Healthâ . This crite-rion is particularly important, due to the financial impacts of work accidents and occupational diseases. This article is especially useful to the scientific and technical community, since it synthesizes the relevance of each one of the choice criteria used and it shows why â Safety and Healthâ must be a criterion in the decision mak-ing process to choose the tunnelling method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As Escalas de Avaliação da Interação Mãe-Bebé constituem a versão portuguesa das Interaction Rating Scales, propostas por Field (1980), e têm por objetivo avaliar a interação mãe-bebé, aos 3 meses de idade do bebé. As Escalas de Avaliação da Interação Mãe-Bebé foram administradas a 51 díades mãe-bebé aos 3, 6 e 12 meses pós-parto. A versão portuguesa das escalas mostrou elevados índices de consistência interna – Alfa de Cronbach 0,85 (IRSff bebé), 0,91 (IRSff mãe), 0,87 (IRSal bebé), 0,82 (IRSal mãe), assim como elevada fidelidade e validade concorrente e preditiva. As Escalas de Avaliação da Interação Mãe-Bebé assume-se, assim, como um instrumento robusto na avaliação da interação mãe-bebé, na situação de interação face-a-face e na situação de interação alimentar, podendo ser utilizadas em diferentes amostras e contextos, clínicos e de investigação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Introduction: There has been a considerable amount of controversy about the use of manometric methods to measure catalase activity. As Maehly and Chance point out in their excellent review] the advantages of these methods is "... that they can be used for any kind of biological material, and purification of the enzyme is not required. The assay is independent of small amounts of peroxidase activity. It is fairly simple to perform, it is rapid and it can be adapted to continuous reading of the reaction". A variety of drawbacks are also listed by the same authors, viz, the inactivation of the enzyme under the experimental conditions and the time lag before a constant rate of oxygen evolution is reached. [...]