20 resultados para genetic strains
Resumo:
Zearalenone (ZEN) is a mycotoxin that has relatively low acute toxicity. However, it is a potent oestrogen, interfering with the reproductive tract of animals. Among other effects, ZEN decreases animals fertility, and induces fibrosis in the uterus, breast cancer and endometrial carcinoma (Zinedine et al., 2007). Anti-mycotoxin additives (AMA) are defined as a group of products that, when added to animal feed, are capable of adsorbing, inactivating, or neutralizing mycotoxins in the gastrointestinal tract of animals. One example of these products are adsorbents based on yeast cell walls, a safe and beneficial animal feed additive (Abreu et al., 2008). When based on active cells, yeast based products also act as a probiotic, contributing to improve the general animal health because it stimulates their immune system and promotes the integrity of intestinal mucosa (Albino et al., 2006). Strains of Saccharomyces cerevisiae isolated from silage were tested for their ZEN removal capability. Their effect on - and b-zearalenol (-ZOL and b-ZOL) was also tested. Strains were grown on YPD separately supplemented with ZEN, -ZOL and b-ZOL, and their elimination from culture media was quantified over time by HPLC-FL.
Resumo:
[Excerpt] The growing global demand for new energy sources combined with environmental concerns had motivated the search for alternative fuels, produced from renewable raw materials. During the last decade, ethanol was considered the next generation of biofuels. But more recently, n-butanol gained attention due to its superior fuel properties when compared with ethanol. Although n-butanol is naturally produced by solventogenic bacteria through ABE fermentation, the low productivities obtained with this bioprocess discouraged its use. Thus, most of n-butanol produced nowadays is chemical synthesized via petrochemical routes and its price is extremely sensitive to crude oil’s price. One possible approach to overcome this issue is to express non-native pathways in microbial factories. (...)
Resumo:
In our work we have chosen to integrate formalism for knowledge representation with formalism for process representation as a way to specify and regulate the overall activity of a multi-cellular agent. The result of this approach is XP,N, another formalism, wherein a distributed system can be modeled as a collection of interrelated sub-nets sharing a common explicit control structure. Each sub-net represents a system of asynchronous concurrent threads modeled by a set of transitions. XP,N combines local state and control with interaction and hierarchy to achieve a high-level abstraction and to model the complex relationships between all the components of a distributed system. Viewed as a tool XP,N provides a carefully devised conflict resolution strategy that intentionally mimics the genetic regulatory mechanism used in an organic cell to select the next genes to process.
Resumo:
There has been a long-standing debate concerning the extent to which the spread of Neolithic ceramics and Malay-Polynesian languages in Island Southeast Asia (ISEA) were coupled to an agriculturally driven demic dispersal out of Taiwan 4000 years ago (4 ka). We previously addressed this question using founder analysis of mitochondrial DNA (mtDNA) control-region sequences to identify major lineage clusters most likely to have dispersed from Taiwan into ISEA, proposing that the dispersal had a relatively minor impact on the extant genetic structure of ISEA, and that the role of agriculture in the expansion of the Austronesian languages was therefore likely to have been correspondingly minor. Here we test these conclusions by sequencing whole mtDNAs from across Taiwan and ISEA, using their higher chronological precision to resolve the overall proportion that participated in the "out-of-Taiwan" mid-Holocene dispersal as opposed to earlier, postglacial expansions in the Early Holocene. We show that, in total, about 20 % of mtDNA lineages in the modern ISEA pool result from the "out-of-Taiwan" dispersal, with most of the remainder signifying earlier processes, mainly due to sea-level rises after the Last Glacial Maximum. Notably, we show that every one of these founder clusters previously entered Taiwan from China, 6-7 ka, where rice-farming originated, and remained distinct from the indigenous Taiwanese population until after the subsequent dispersal into ISEA.
Resumo:
During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds are formed. The objective of the present work was to adapt computational approaches to analyze pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and genetic characterization together with individual must fermentations were performed, and metabolites relevant to aromatic profiles were determined. Experimental results were projected onto a common coordinates system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of most-correlated features of noteworthy biological importance. The present method allowed, as a breakthrough, to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficulties in comparing different types of data. Therefore, the proposed computational approach revealed as successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fermentative conditions. This will allow the identification of combined relevant features with application in selection of good winemaking strains.