19 resultados para electron beams
Resumo:
Sandwich geometries, mainly in the form of panels and beams, are commonly applied in various transportation industries, such as aerospace, aeronautic and automotive. Sandwich geometries represent important advantages in structural applications, namely high specific stiffness, low weight, and possibility of design optimization prior to manufacturing. The aim of this paper is to uncover the influence of the number of reinforcements (ribs), and of the thickness on the mechanical behavior of all-metal sandwich panels subjected to uncoupled bending and torsion loadings. In this study, four geometries are compared. The orientation of the reinforcements and the effect of transversal ribs are also considered in this study. It is shown that the all the relations are non-linear, despite the elastic nature of the analysis in the Finite Element software ANSYS MECHANICAL APDL.
Resumo:
Supplementary data associated with this article can be found, in the online version, at: http://dx.doi.org/10.1016/j.electacta.2015.09.169.
Resumo:
Several types of internally reinforced thin-walled beams are subjected to a feasibility evaluation of its mechanical behavior for industrial applications. The adapting of already existing efficient sandwich geometries to hollow-box beams of larger dimensions may reveal promising results. Novel types of sandwich beams under bending and torsion uncoupled loadings are studied in terms of stiffness behavior in static analysis. For the analysis of the solutions, the models are built using the Finite Element Method (FEM) software ANSYS Mechanical APDL. The feasibility of the novel beams was determined by the comparison of the stiffness behavior of the novel hollow-box beams with conventional hollow-box beams. An efficiency parameter was defined in order to determine the feasibility. It is found that the novel geometries represent an excellent improvement under bending loadings, better than under torsion loadings. Nevertheless, for bending and torsion combined loadings, if bending loads are predominant, the beams can still be interesting for some applications, in particular those with mobile parts.
Resumo:
Aromatic amines resulted from azo dyes biotransformation under anaerobic conditions are generally recalcitrant to further anaerobic degradation. The catalytic effect of carbon materials (CM) on the reduction of azo dyes is known and has been confirmed in this work by increasing 3-fold the biological reduction rate of Mordant Yellow 1 (MY1). The resulting m-nitroaniline (m-NoA) was further degraded to m-phenylenediamine (m-Phe) only in the presence of CM. The use of CM to degraded anaerobically aromatic amines resulted from azo dye reduction was never reported before. In the sequence, we studied the effect of different CM on the bioreduction of o-, m- and p-NoA. Three microporous activated carbons with different surface chemistry, original (AC0), chemical oxidized with HNO3 (ACHNO3) and thermal treated (ACH2), and three mesoporous carbons, xerogels (CXA and CXB) and nanotubes (CNT) were assessed. In the absence of CM, NoA were only partially reduced to the corresponding Phe, whereas in the presence of CM, more than 90% was converted to the corresponding Phe. ACH2 and AC0 were the best electron shuttles, increasing the rates up to 8-fold. In 24h, the biological treatment of NoA and MY1 with AC0, decreased up to 88% the toxicity towards a methanogenic consortium, as compared to the non-treated solutions. This article is protected by copyright. All rights reserved