20 resultados para dip-coating technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial stents, especially metallic ones, present several disadvantages, and this gives rise to the necessity of producing or coating stents with different materials, like natural polymers, in order to improve their biocompatibility and minimize the disadvantages of metallic ones. This review paper discusses some applications of natural-based polymers in stents, namely polylactic acid (PLA) for stent development and chitosan for biocompatible coatings of stents . Furthermore, some effective stent functionalization techniques will be discussed, namely Layer by Layer (LBL) technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was carried out to evaluate the effect of chitosan-based edible coatings with Aloe vera extract on the postharvest blueberry fruit quality during storage at 5 °C. Firstly, A. vera fractions (pulp and liquid) were extracted from leaves and evaluated in terms of antifungal and antioxidant capacities. The choice of the most adequate chitosan and A. vera fraction concentrations to be incorporated in coating formulation was made based on the wettability of the corresponding coating solutions. Coatings with 0.5% (w/v) chitosan + 0.5% (w/v) glycerol + 0.1% (w/v) Tween 80 + 0.5% (v/v) A. vera liquid fraction presented the best characteristics to uniformly coat blueberry surface. Physico-chemical (i.e., titratable acidity, pH, weight loss) and microbiological analyses of coated blueberries (non-inoculated or artificially inoculated with Botrytis cinerea) were performed during 25 d. Microbiological growth and water loss levels were approximately reduced by 50% and 42%, respectively, in coated blueberries after 25 d compared to uncoated blueberries. After 15 d, weight loss values were 6.2% and 3.7% for uncoated and chitosanA. vera coated blueberries, respectively. Uncoated fruits presented mold contamination after 2 d of storage (2.0 ± 0.32 log CFU g1), whilst fruits with chitosan-based coatings with A. vera presented mold contamination only after 9 d of storage (1.3 ± 0.35 log CFU g1). Overall, coatings developed in this study extend blueberries shelf-life for about 5 d, demonstrating for the first time that the combination of chitosan and A. vera liquid fraction as edible coating materials has great potential in expanding the shelf-life of fruits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The layer-by-layer (LbL) deposition method was used to build up alternating layers (five) of different polyelectrolyte solutions (alginate, zein-carvacrol nanocapsules, chitosan and chitosan-carvacrol emulsions) on an aminolysed/charged polyethylene terephthalate (A/C PET) film. These nanolaminated films were characterised by contact angle measurements and through the determination of water vapour (WVTR) and oxygen (O2TR) transmission rates. The effect of active nanolaminated films against the Alternaria sp. and Rhizopus stolonifer was also evaluated. This procedure allowed developing optically transparent nanolaminated films with tuneable water vapour and gas properties and antifungal activity. The water and oxygen transmission rate values for the multilayer films were lower than those previously reported for the neat alginate or chitosan films. The presence of carvacrol and zein nanocapsules significantly decreased the water transmission rate (up to 40 %) of the nanolaminated films. However, the O2TR behaved differently and was only improved (up to 45 %) when carvacrol was encapsulated, i.e. nanolaminated films prepared by alternating alginate with nanocapsules of zein-carvacrol layers showed better oxygen barrier properties than those prepared as an emulsion of chitosan and carvacrol. These films containing zein-carvacrol nanocapsules also showed the highest antifungal activity (30 %), which did not significantly differ from those obtained with the highest amount of carvacrol, probably due to the controlled release of the active agent (carvacrol) from the zein-carvacrol nanocapsules. Thus, this work shows that nanolaminated films prepared with alternating layers of alginate and zein-carvacrol nanocapsules can be considered to improve the shelf-life of foodstuffs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.