17 resultados para automatic speech recognition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Text Mining has opened a vast array of possibilities concerning automatic information retrieval from large amounts of text documents. A variety of themes and types of documents can be easily analyzed. More complex features such as those used in Forensic Linguistics can gather deeper understanding from the documents, making possible performing di cult tasks such as author identi cation. In this work we explore the capabilities of simpler Text Mining approaches to author identification of unstructured documents, in particular the ability to distinguish poetic works from two of Fernando Pessoas' heteronyms: Alvaro de Campos and Ricardo Reis. Several processing options were tested and accuracies of 97% were reached, which encourage further developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural mineral waters (still), effervescent natural mineral waters (sparkling) and aromatized waters with fruit-flavors (still or sparkling) are an emerging market. In this work, the capability of a potentiometric electronic tongue, comprised with lipid polymeric membranes, to quantitatively estimate routinely quality physicochemical parameters (pH and conductivity) as well as to qualitatively classify water samples according to the type of water was evaluated. The study showed that a linear discriminant model, based on 21 sensors selected by the simulated annealing algorithm, could correctly classify 100 % of the water samples (leave-one out cross-validation). This potential was further demonstrated by applying a repeated K-fold cross-validation (guaranteeing that at least 15 % of independent samples were only used for internal-validation) for which 96 % of correct classifications were attained. The satisfactory recognition performance of the E-tongue could be attributed to the pH, conductivity, sugars and organic acids contents of the studied waters, which turned out in significant differences of sweetness perception indexes and total acid flavor. Moreover, the E-tongue combined with multivariate linear regression models, based on sub-sets of sensors selected by the simulated annealing algorithm, could accurately estimate waters pH (25 sensors: R 2 equal to 0.99 and 0.97 for leave-one-out or repeated K-folds cross-validation) and conductivity (23 sensors: R 2 equal to 0.997 and 0.99 for leave-one-out or repeated K-folds cross-validation). So, the overall satisfactory results achieved, allow envisaging a potential future application of electronic tongue devices for bottled water analysis and classification.