50 resultados para Turn Mimetics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete is the primary construction material for civil infrastructures and generally consists of cement, coarse aggregates, sand, admixtures and water. Cementitious materials are characterized by quasi-brittle behaviour and susceptible to cracking [1]. The cracking process within concrete begins with isolated nano-cracks, which then conjoin to form micro-cracks and in turn macro-cracks. Formation and growth of cracks lead to loss of mechanical performance with time and also make concrete accessible to water and other degrading agents such as CO2, chlorides, sulfates, etc. leading to strength loss and corrosion of steel rebars. To improve brittleness of concrete, reinforcements such as polymeric as well as glass and carbon fibers have been used and microfibers improved the mechanical properties significantly by delaying (but could not stop) the transformation of micro-cracks into macro forms [2]. This fact encouraged the use of nano-sized fillers in concrete to prevent the growth of nano-cracks transforming in to micro and macro forms. Nanoparticles like SiO2, Fe2O3, and TiO2 led to considerable improvement in mechanical performance and moreover, nano-TiO2 helped to remove organic pollutants from concrete surfaces [3].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em European and Transglobal Business Law

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A educação em saúde conheceu, no último século, profundas mudanças, tanto no plano conceitual como no das práticas dele decorrentes, fruto das transformações por que passou a humanidade em termos políticos, económicos e sociais. O conceito de educação desviou-se da perspectiva instruidora e escolarizadora de crianças e jovens, centrada na transmissão-assimilação de conhecimentos, para uma perspectiva mais abrangente e integradora, centrada na criação de condições que permitem aos indivíduos desenvolverem-se holisticamente na sua multidimensionalidade, em permanente interação com os outros. Por sua vez, o conceito de saúde perdeu o seu pendor negativo de ausência de doença, passando a ser entendido positivamente como um estado de completo bem-estar físico, mental, social e espiritual, em constante mutação ao longo da vida. Nesse sentido, a educação em saúde deixou também de ser vista como a transmissão de informação de caráter higienisto-sanitário, orientada para a prevenção ou o tratamento da doença, efetuada em contextos formais, para passar a ser entendida como a capacitação dos indivíduos para controlarem os seus próprios determinantes de saúde, através da criação ou do desenvolvimento de competências de ação. A educação e a saúde passam, pois, a apresentar-se como duas faces de um mesmo processo. Neste trabalho pretendemos, pois, analisar a evolução conceptual em torno da saúde e da educação no séc. XX, tentando perceber até que ponto essas mudanças conceptuais se têm refletido ao nível das práticas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compelling biological and epidemiological evidences point to a key role of genetic variants of the TERT and TERC genes in cancer development. We analyzed the genetic variability of these two gene regions using samples of 2,267 multiple myeloma (MM) cases and 2,796 healthy controls. We found that a TERT variant, rs2242652, is associated with reduced MM susceptibility (OR?=?0.81; 95% CI: 0.72-0.92; p?=?0.001). In addition we measured the leukocyte telomere length (LTL) in a subgroup of 140 cases who were chemotherapy-free at the time of blood donation and 468 controls, and found that MM patients had longer telomeres compared to controls (OR?=?1.19; 95% CI: 0.63-2.24; ptrend ?=?0.01 comparing the quartile with the longest LTL versus the shortest LTL). Our data suggest the hypothesis of decreased disease risk by genetic variants that reduce the efficiency of the telomerase complex. This reduced efficiency leads to shorter telomere ends, which in turn may also be a marker of decreased MM risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Arquitectura

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Plant Molecular Biology, Biotechnology and Bioentrepeneurship

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system’s state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed, and the main results presented and compared to identify differences among the methodologies and procedures adopted in this work. The input conditions to the models correspond to the experimental data capture from an adult male during normal gait. In general, the obtained results in terms of positions do not differ significantly when the different hip joint models are considered. In sharp contrast, the velocity and acceleration plotted vary significantly. The effect of the hip joint modeling approach is clearly measurable and visible in terms of peaks and oscillations of the velocities and accelerations. In general, with the dry hip model, intra-joint force peaks can be observed, which can be associated with the multiple impacts between the femur head and the cup. In turn, when the lubricant is present, the system’s response tends to be smoother due to the damping effects of the synovial fluid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work it was studied the possible use of thin films, composed of Au nanoparticles (NPs) embedded in a TiO2 matrix, in biological applications, by evaluating their interaction with a well-known protein, Bovine Serum Albumin (BSA), as well as with microbial cells (Candida albicans). The films were produced by one-step reactive DC magnetron sputtering followed by heat-treatment. The samples revealed a composition of 8.3 at.% of Au and a stoichiometric TiO2 matrix. The annealing promoted grain size increase of the Au NPs from 3 nm (at 300 °C) to 7 nm (at 500 °C) and a progressive crystallization of the TiO2 matrix to anatase. A broad localized surface plasmon resonance (LSPR) absorption band (λ = 580–720 nm) was clearly observed in the sample annealed at 500 °C, being less intense at 300 °C. The biological tests indicated that the BSA adhesion is dependent on surface nanostructure morphology, which in turn depends on the annealing temperature that changed the roughness and wettability of the films. The Au:TiO2 thin films also induced a significant change of the microbial cell membrane integrity, and ultimately the cell viability, which in turn affected the adhesion on its surface. The microstructural changes (structure, grain size and surface morphology) of the Au:TiO2 films promoted by heat-treatment shaped the amount of BSA adhered and affected cell viability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Design de Comunicação de Moda

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento Ciências da Educação (Especialidade em Psicologia da Educação)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a reconfigurable system, the response to contextual or internal change may trigger reconfiguration events which, on their turn, activate scripts that change the system׳s architecture at runtime. To be safe, however, such reconfigurations are expected to obey the fundamental principles originally specified by its architect. This paper introduces an approach to ensure that such principles are observed along reconfigurations by verifying them against concrete specifications in a suitable logic. Architectures, reconfiguration scripts, and principles are specified in Archery, an architectural description language with formal semantics. Principles are encoded as constraints, which become formulas of a two-layer graded hybrid logic, where the upper layer restricts reconfigurations, and the lower layer constrains the resulting configurations. Constraints are verified by translating them into logic formulas, which are interpreted over models derived from Archery specifications of architectures and reconfigurations. Suitable notions of bisimulation and refinement, to which the architect may resort to compare configurations, are given, and their relationship with modal validity is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the fabrication process and characterization of a flexible pressure sensor based on polydimethylsiloxane (PDMS) and multi-walled carbon nanotubes (CNT-PDMS). The proposed approach relies on patterned CNT-PDMS nanocomposite strain gauges fabricated with SU-8 microstructures (with the micropatterns) in a low‑cost and simple fabrication process. This nanocomposite polymer is mounted over a PDMS membrane, which, in turn, lies on top of a PDMS diaphragm like structure. This configuration enables the PDMS membrane to bend when pressure is applied, thereby affecting the nanocomposite strain gauges, effectively changing their electrical resistance. Carbon nanotubes have several advantages such as excellent mechanical properties, high electrical conductivity and thermal stability. Furthermore, the measurement range of the proposed sensor can be adapted according to the application by varying the CNTs content and geometry of microstructure. In addition, the sensor’s biocompatibility, low cost and simple fabrication makes it very appealing for biomechanical strain sensing. The sensor’s sensitivity was about 0.073%ΔR/mmHg.