30 resultados para Shear flow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the optimization of an extrusion die designed for the production of a wood–plastic composite (WPC) decking profile is investigated. The optimization was performed with the help of numerical tools, more precisely, by solving the continuity and momentum conservation equations that govern such flow, and aiming to balance properly the flow distribution at the extrusion die flow channel outlet. To capture the rheological behavior of the material, we used a Bird-Carreau model with parameters obtained from a fit to the (shear viscosity versus shearrate) experimental data, collected from rheological tests. To yield a balanced output flow, several numerical runs were performed by adjusting the flow restriction at different regions of the flow-channel parallel zone crosssection. The simulations were compared with the experimental results and an excellent qualitative agreement was obtained, allowing, in this way, to attain a good balancing of the output flow and emphasizing the advantages of using numerical tools to aid the design of profile extrusion dies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usual high cost of commercial codes, and some technical limitations, clearly limits the employment of numerical modelling tools in both industry and academia. Consequently, the number of companies that use numerical code is limited and there a lot of effort put on the development and maintenance of in-house academic based codes. Having in mind the potential of using numerical modelling tools as a design aid, of both products and processes, different research teams have been contributing to the development of open source codes/libraries. In this framework, any individual can take advantage of the available code capabilities and/or implement additional features based on his specific needs. These type of codes are usually developed by large communities, which provide improvements and new features in their specific fields of research, thus increasing significantly the code development process. Among others, OpenFOAM® multi-physics computational library, developed by a very large and dynamic community, nowadays comprises several features usually only available in their commercial counterparts; e.g. dynamic meshes, large diversity of complex physical models, parallelization, multiphase models, to name just a few. This computational library is developed in C++ and makes use of most of all language capabilities to facilitate the implementation of new functionalities. Concerning the field of computational rheology, OpenFOAM® solvers were recently developed to deal with the most relevant differential viscoelastic rheological models, and stabilization techniques are currently being verified. This work describes the implementation of a new solver in OpenFOAM® library, able to cope with integral viscoelastic models based on the deformation field method. The implemented solver is verified through the comparison of the predicted results with analytical solutions, results published in the literature and by using the Method of Manufactured Solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usual high cost of commercial codes, and some technical limitations, clearly limits the employment of numerical modelling tools in both industry and academia. Consequently, the number of companies that use numerical code is limited and there a lot of effort put on the development and maintenance of in-house academic based codes . Having in mind the potential of using numerical modelling tools as a design aid, of both products and processes, different research teams have been contributing to the development of open source codes/libraries. In this framework, any individual can take advantage of the available code capabilities and/or implement additional features based on his specific needs. These type of codes are usually developed by large communities, which provide improvements and new features in their specific fields of research, thus increasing significantly the code development process. Among others, OpenFOAM® multi-physics computational library, developed by a very large and dynamic community, nowadays comprises several features usually only available in their commercial counterparts; e.g. dynamic meshes, large diversity of complex physical models, parallelization, multiphase models, to name just a few. This computational library is developed in C++ and makes use of most of all language capabilities to facilitate the implementation of new functionalities. Concerning the field of computational rheology, OpenFOAM® solvers were recently developed to deal with the most relevant differential viscoelastic rheological models, and stabilization techniques are currently being verified. This work describes the implementation of a new solver in OpenFOAM® library, able to cope with integral viscoelastic models based on the deformation field method. The implemented solver is verified through the comparison of the predicted results with analytical solutions, results published in the literature and by using the Method of Manufactured Solutions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Ordenamento e Valorização de Recursos Geológicos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution and orientation of energy inside jets is predicted to be an experimental handle on colour connections between the hard--scatter quarks and gluons initiating the jets. This Letter presents a measurement of the distribution of one such variable, the jet pull angle. The pull angle is measured for jets produced in tt¯ events with one W boson decaying leptonically and the other decaying to jets using 20.3 fb−1 of data recorded with the ATLAS detector at a centre--of--mass energy of s√=8 TeV at the LHC. The jet pull angle distribution is corrected for detector resolution and acceptance effects and is compared to various models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using sNN−−−−√=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated lumonisity of 7 μb−1. The vm-vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities ϵ2 and ϵ3. On the other hand, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with ϵm-ϵn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Documento submetido para revisão pelos pares. A publicar em Journal of Parallel and Distributed Computing. ISSN 0743-7315

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) has been widely used for biomedical purposes because of its exceptional biocompatibility, bioactivity and osteoconductivity [1]. As these properties are directly related to HAp particles characteristics (size, morphology and purity), a very good control of the reaction conditions is required to obtain particles with the desired properties. Usually, HAp is synthesized by wet chemical precipitation in stirred tank batch reactors that often lead to inconsistencies in product specifications due to their low mixing efficiency [2]. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Available online 21 March 2016"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos.