30 resultados para Program and project evaluation
Resumo:
Different metal-ion exchanged NaY zeolite, Na(M)Y, were used to prepare poly(vinylidene fluoride) based composites by solvent casting and melting crystallization. The effect of different metal ion-exchanged zeolites on polymer crystallization and electrical properties was reported. Cation-framework interactions and hydration energy of the cations determined that K+ is the most efficient exchanged ion in NaY zeolite, followed by Cs+ and Li+. The electroactive phase crystallization strongly depends on the ions present in the zeolite, leading to variations of the surface energy characteristics of the Na(M)Y zeolites and the polymer chain ability of penetration in the zeolite. Thus, Na(Li)Y and NaY induces the complete electroactive -phase crystallization of the crystalline phase of PVDF, while Na(K)Y only induces it partly and Na(Cs)Y is not able to promote the crystallization of the electroactive phase. Furthermore, different ion size/weigh and different interaction with the zeolite framework results in significant variations in the electrical response of the composite. In this way, iinterfacial polarization effects in the zeolite cavities and zeolite-polymer interface, leads to strong increases of the dielectric constant on the composites with lightest ions weakly bound to the zeolite framework. Polymer composite with Na(Li)Y show the highest dielectric response, followed by NaY and Na(K)Y. Zeolite Na(Cs)Y contribute to a decrease of the dielectric constant of the composite. The results show the relevance of the materials for sensor development.
Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering
Resumo:
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.
Resumo:
Well-dispersed loads of finely powdered metals, metal oxides, several carbon allotropes or nanoclays are incorporated into highly porous polyamide 6 microcapsules in controllable amounts via an original one-step in situ fabrication technique. It is based on activated anionic polymerization (AAP) of ε-caprolactam in a hydrocarbon solvent performed in the presence of the respective micro- or nanosized loads. The forming microcapsules with typical diameters of 25-50 µm entrap up to 40 wt% of load. Their melt processing produces hybrid thermoplastic composites. Mechanical, electric conductivity and magnetic response measurements show that transforming of in situ loaded microcapsules into composites by melt processing (MP) is a facile and rapid method to fabricate materials with high mechanical resistance and electro-magnetic characteristics sufficient for many industrial applications. This novel concept requires low polymerization temperatures, no functionalization or compatibilization of the loads and it is easy to scale up at industrial production levels.
Resumo:
A systematic study for the production of porous poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), films using solvent evaporation and non-solvent induced phase separation techniques is presented. Processing parameters such as copolymer volume fraction, solvent, preset exposure time to air before immersion, and non-solvent and temperature of the coagulation bath were varied and the corresponding sample morphology, hydrophobicity, thermal and mechanical properties were determined. Film morphologies including homogeneous pore distributions, micropores, microvoids, spherulites and non-porous films were obtained. The morphology variations strongly influence sample hydrophobicity and mechanical properties. All samples crystallize in the electroactive β-phase with a degree of crystallinity around 30 %.
Resumo:
Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.
Resumo:
Purpose: To evaluate the impact of eye and head rotation in the measurement of peripheral refraction with an open-field autorefractometer in myopic eyes wearing two different center-distance designs of multifocal contact lenses (MFCLs). Methods: Nineteen right eyes from 19 myopic patients (average central M ± SD = −2.67 ± 1.66 D) aged 20–27 years (mean ± SD = 23.2 ± 3.3 years) were evaluated using a Grand-Seiko autorefractometer. Patients were fitted with one multifocal aspheric center-distance contact lens (Biofinity Multifocal D®) and with one multi-concentric MFCL (Acuvue Oasys for Presbyopia). Axial and peripheral refraction were evaluated by eye rotation and by head rotation under naked eye condition and with each MFCL fitted randomly and in independent sessions. Results: For the naked eye, refractive pattern (M, J0 and J45) across the central 60◦ of the horizontal visual field values did not show significant changes measured by rotating the eye or rotating the head (p > 0.05). Similar results were obtained wearing the Biofinity D, for both testing methods, no obtaining significant differences to M, J0 and J45 values (p > 0.05). For Acuvue Oasys for presbyopia, also no differences were found when comparing measurements obtained by eye and head rotation (p > 0.05). Multivariate analysis did not showed a significant interaction between testing method and lens type neither with measuring locations (MANOVA, p > 0.05). There were significant differences in M and J0 values between naked eyes and each MFCL. Conclusion: Measurements of peripheral refraction by rotating the eye or rotating the head in myopic patients wearing dominant design or multi-concentric multifocal silicone hydrogel contact lens are comparable.
Resumo:
Although some studies point to cognitive stimulation as a beneficial therapy for older adults with cognitive impairments, this area of research and practice is still lacking dissemination and is underrepresented in many countries. Moreover, the comparative effects of different intervention durations remain to be established and, besides cognitive effects, pragmatic parameters, such as cost-effectiveness and experiential relevance to participants, are seldom explored. In this work, we present a randomized con- trolled wait-list trial evaluating 2 different intervention durations (standard 1⁄4 17 vs brief 1⁄4 11 sessions) of a cognitive stimulation program developed for older adults with cognitive impairments with or without dementia. 20 participants were randomly assigned to the standard duration intervention program (17 sessions, 1.5 months) or to a wait-list group. At postintervention of the standard intervention group, the wait-list group crossed over to receive the brief intervention program (11 sessions, 1 month). Changes in neuropsychological, functionality, quality of life, and caregiver outcomes were evaluated. Experience during intervention and costs and feasibility were also evaluated. The current cognitive stimulation programs (ie, standard and brief) showed high values of experiential relevance for both intervention durations. High adherence, completion rates, and reasonable costs were found for both formats. Further studies are needed to definitively establish the potential efficacy, optimal duration, cost-effectiveness, and experiential relevance for participants of cognitive intervention approaches.
Resumo:
PURPOSE: The aim of this work was to study the central and peripheral thickness of several contact lenses (CL) with different powers and analyze how thickness variation affects CL oxygen transmissibility. METHODS: Four daily disposable and five monthly or biweekly CL were studied. The powers of each CL were: the maximum negative power of each brand; -6.00 D; -3.00 D; zero power (-0.25 D or -0.50 D), +3.00 D and +6.00 D. Central and peripheral thicknesses were measured with an electronic thickness gauge. Each lens was measured five times (central and 3mm paracentral) and the mean value was considered. Using the values of oxygen permeability given by the manufacturers and the measured thicknesses, the variation of oxygen transmissibility with lens power was determined. RESULTS: For monthly or biweekly lenses, central thickness changed between 0.061 ± 0.002 mm and 0.243 ± 0.002 mm, and peripheral thickness varied between 0.084 ± 0.002 mm and 0.231 ± 0.015 mm. Daily disposable lenses showed central values ranging between 0.056 ± 0.0016 mm and 0.205 ± 0.002 mm and peripheral values between 0.108 ± 0.05 and 0.232 ± 0.011 mm. Oxygen transmissibility (in units) of monthly or biweekly CL ranged between 39.4 ± 0.3 and 246.0 ± 14.4 and for daily disposable lenses the values range between 9.5 ± 0.5 and 178.1 ± 5.1. CONCLUSIONS: The central and peripheral thicknesses change significantly when considering the CL power and this has a significant impact on the oxygen transmissibility. Eyecare practitioners must have this fact in account when high power plus or minus lenses are fitted or when continuous wear is considered.
Resumo:
It is well known that color coding facilitates search and iden- tification in real-life tasks. The aim of this work was to compare reac- tion times for normal color and dichromatic observers in a visual search experiment. A unique distracter color was used to avoid abnormal color vision vulnerability to background complexity. Reaction times for nor- mal color observers and dichromats were estimated for 2◦ central vision at 48 directions around a white point in CIE L∗a∗b∗ color space for systematic examination on the mechanisms of dichromatic color percep- tion. The results show that mean search times for dichromats were twice larger compared to the normal color observers and for all directions. The difference between the copunctual confusion lines and the confusion direction measure experimentally was 5.5◦ for protanopes and 7.5◦ for deuteranopes.
Resumo:
tThe main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOzthin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposi-tion: the flow of the reactive gases mixture (N2and O2, with a constant concentration ratio of 17:3); thesubstrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel).The obtained films exhibit significant differences. The variation of the deposition parameters inducesvariations of the composition, microstructure and morphology. These differences cause variation of theelectrical resistivity essentially correlated with the composition and structural changes. The gradualdecrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity.The dielectric characteristics of some of the high resistance TaxNyOzfilms were obtained in the sampleswith a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectricTaxNyOzfilms). Some of these films exhibited dielectric constant values higher than those reported forother tantalum based dielectric films.
Resumo:
Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited usinga pure Ta target and a working atmosphere with a constant N2/O2ratio. The choice of this constant ratiolimits the study concerning the influence of each reactive gas, but allows a deeper understanding of theaspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous.This work begins by analysing the data obtained directly from the film deposition stage, followed bythe analysis of the morphology, composition and structure. For a better understanding regarding theinfluence of the deposition parameters, the analyses are presented by using the following criterion: thefilms were divided into two sets, one of them produced with grounded substrate holder and the otherwith a polarization of −50 V. Each one of these sets was produced with different partial pressure of thereactive gases P(N2+ O2). All the films exhibited a O/N ratio higher than the N/O ratio in the depositionchamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increaseof the O content is observed, associated to the strong decrease of the N content, when P(N2+ O2) is higherthan 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazingincidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-rayreflectivity studies found out that the density of the films depended on the deposition conditions: thehigher the gas pressure, the lower the density. Firstly, a dominant -Ta structure is observed, for lowP(N2+ O2); secondly a fcc-Ta(N,O) structure, for intermediate P(N2+ O2); thirdly, the films are amorphousfor the highest partial pressures. The comparison of the characteristics of both sets of produced TaNxOyfilms are explained, with detail, in the text.
Resumo:
This paper aims to assess the impact of environmental noise in the vicinity of primary schools and to analyze its influence in the workplace and in student performance through perceptions and objective evaluation. The subjective evaluation consisted of the application of questionnaires to students and teachers, and the objective assessment consisted of measuring in situ noise levels. The survey covered nine classes located in three primary schools. Statistical Package for Social Sciences was used for data processing and to draw conclusions. Additionally, the relationship of the difference between environmental and background noise levels of each classroom and students with difficulties in hearing the teacherâ s voice was examined. Noise levels in front of the school, the schoolyard, and the most noise-exposed classrooms (occupied and unoccupied) were measured. Indoor noise levels were much higher than World Health Organization (WHO) recommended values: LAeq,30min averaged 70.5 dB(A) in occupied classrooms, and 38.6 dB(A) in unoccupied ones. Measurements of indoor and outdoor noise suggest that noise from the outside (road, schoolyard) affects the background noise level in classrooms but in varying degrees. It was concluded that the façades most exposed to road traffic noise are subjected to values higher than 55.0 dB(A), and noise levels inside the classrooms are mainly due to the schoolyard, students, and the road traffic. The difference between background (LA95,30min) and the equivalent noise levels (LAeq,30min) in occupied classrooms was 19.2 dB(A), which shows that studentsâ activities are a significant source of classroom noise.
Resumo:
Tese de Doutoramento em Psicologia (Especialidade de Psicologia Clínica)
Resumo:
Natural mineral waters (still), effervescent natural mineral waters (sparkling) and aromatized waters with fruit-flavors (still or sparkling) are an emerging market. In this work, the capability of a potentiometric electronic tongue, comprised with lipid polymeric membranes, to quantitatively estimate routinely quality physicochemical parameters (pH and conductivity) as well as to qualitatively classify water samples according to the type of water was evaluated. The study showed that a linear discriminant model, based on 21 sensors selected by the simulated annealing algorithm, could correctly classify 100 % of the water samples (leave-one out cross-validation). This potential was further demonstrated by applying a repeated K-fold cross-validation (guaranteeing that at least 15 % of independent samples were only used for internal-validation) for which 96 % of correct classifications were attained. The satisfactory recognition performance of the E-tongue could be attributed to the pH, conductivity, sugars and organic acids contents of the studied waters, which turned out in significant differences of sweetness perception indexes and total acid flavor. Moreover, the E-tongue combined with multivariate linear regression models, based on sub-sets of sensors selected by the simulated annealing algorithm, could accurately estimate waters pH (25 sensors: R 2 equal to 0.99 and 0.97 for leave-one-out or repeated K-folds cross-validation) and conductivity (23 sensors: R 2 equal to 0.997 and 0.99 for leave-one-out or repeated K-folds cross-validation). So, the overall satisfactory results achieved, allow envisaging a potential future application of electronic tongue devices for bottled water analysis and classification.
Resumo:
This work presents a molecular-scale agent-based model for the simulation of enzymatic reactions at experimentally measured concentrations. The model incorporates stochasticity and spatial dependence, using diffusing and reacting particles with physical dimensions. We developed strategies to adjust and validate the enzymatic rates and diffusion coefficients to the information required by the computational agents, i.e., collision efficiency, interaction logic between agents, the time scale associated with interactions (e.g., kinetics), and agent velocity. Also, we tested the impact of molecular location (a source of biological noise) in the speed at which the reactions take place. Simulations were conducted for experimental data on the 2-hydroxymuconate tautomerase (EC 5.3.2.6, UniProt ID Q01468) and the Steroid Delta-isomerase (EC 5.3.3.1, UniProt ID P07445). Obtained results demonstrate that our approach is in accordance to existing experimental data and long-term biophysical and biochemical assumptions.