22 resultados para Nonparametric regression techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several suction–water-content (s-w) calibrations for the filter paper method (FPM) used for soil-suction measurement have been published. Most of the calibrations involve a bilinear function (i.e., two different equations) with an inflection point occurring at 60 kParegression analysis of various previously published calibrations obtained for filter paper Whatman No. 42 (W42) is presented and discussed. The approach is applied herein to data obtained from three establish bilinear calibrations (six equations) for W42 filter paper to determine the two fitting parameters of the continuous function. An experimental evaluation of the new calibration show that the suctions estimated by the contact FPM test using the proposed function compare well with suctions measured by other laboratory techniques for two different soils for the suction range of 50 kPa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research aimed to establish tyre-road noise models by using a Data Mining approach that allowed to build a predictive model and assess the importance of the tested input variables. The data modelling took into account three learning algorithms and three metrics to define the best predictive model. The variables tested included basic properties of pavement surfaces, macrotexture, megatexture, and uneven- ness and, for the first time, damping. Also, the importance of those variables was measured by using a sensitivity analysis procedure. Two types of models were set: one with basic variables and another with complex variables, such as megatexture and damping, all as a function of vehicles speed. More detailed models were additionally set by the speed level. As a result, several models with very good tyre-road noise predictive capacity were achieved. The most relevant variables were Speed, Temperature, Aggregate size, Mean Profile Depth, and Damping, which had the highest importance, even though influenced by speed. Megatexture and IRI had the lowest importance. The applicability of the models developed in this work is relevant for trucks tyre-noise prediction, represented by the AVON V4 test tyre, at the early stage of road pavements use. Therefore, the obtained models are highly useful for the design of pavements and for noise prediction by road authorities and contractors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial stents, especially metallic ones, present several disadvantages, and this gives rise to the necessity of producing or coating stents with different materials, like natural polymers, in order to improve their biocompatibility and minimize the disadvantages of metallic ones. This review paper discusses some applications of natural-based polymers in stents, namely polylactic acid (PLA) for stent development and chitosan for biocompatible coatings of stents . Furthermore, some effective stent functionalization techniques will be discussed, namely Layer by Layer (LBL) technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Psicologia (Especialidade de Psicologia Experimental e Ciências Cognitivas)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia Civil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hydrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2%, 93.1%, 92.97% respectively, thus showing their feasibility to work in a real environment.