19 resultados para New career models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Programa Doutoral em Líderes para as Indústrias Tecnológicas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selection of spawning habitat of a population of Octopus vulgaris that is subject to a small-scale exploitation was studied in the Cíes Islands within the National Park of the Atlantic Islands of Galicia (NW Spain). The technique used was visual censuses by scuba diving. We conducted 93 visual censuses from April 2012 to April 2014. The total swept area was 123.69 ha. Habitat features (season, depth, zone, bottom temperature, swept area, bottom substrate type, and creels fishing impact) were evaluated as predictors of the presence/absence of spawning dens using GAM models. O. vulgaris has a noteworthy preference for spawning in areas with hard bottom substrate and moderate depth (approximately 20 m). The higher density of spawning dens (1.08ha−1) was found in a surveyed area of 50.14ha located in the northeastern part of the northern Cíes Island. We propose to protect the area comprised from Punta Escodelo to Punta Ferreiro between 5 and 30 m depth. This area has a surface of 158 ha equivalent to 5.98% of the total marine area of the Cíes islands. The strengths and weaknesses of a management strategy based on the protection of the species’ spawning habitat are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The environmental and socio-economic importance of coastal areas is widely recognized, but at present these areas face severe weaknesses and high-risk situations. The increased demand and growing human occupation of coastal zones have greatly contributed to exacerbating such weaknesses. Today, throughout the world, in all countries with coastal regions, episodes of waves overtopping and coastal flooding are frequent. These episodes are usually responsible for property losses and often put human lives at risk. The floods are caused by coastal storms primarily due to the action of very strong winds. The propagation of these storms towards the coast induces high water levels. It is expected that climate change phenomena will contribute to the intensification of coastal storms. In this context, an estimation of coastal flooding hazards is of paramount importance for the planning and management of coastal zones. Consequently, carrying out a series of storm scenarios and analyzing their impacts through numerical modeling is of prime interest to coastal decision-makers. Firstly, throughout this work, historical storm tracks and intensities are characterized for the northeastern region of United States coast, in terms of probability of occurrence. Secondly, several storm events with high potential of occurrence are generated using a specific tool of DelftDashboard interface for Delft3D software. Hydrodynamic models are then used to generate ensemble simulations to assess storms' effects on coastal water levels. For the United States’ northeastern coast, a highly refined regional domain is considered surrounding the area of The Battery, New York, situated in New York Harbor. Based on statistical data of numerical modeling results, a review of the impact of coastal storms to different locations within the study area is performed.