45 resultados para Maintenance Engineering
Resumo:
Bacteria are central to human health and disease, but existing tools to edit microbial consortia are limited. For example, broad-spectrum antibiotics are unable to precisely manipulate bacterial communities. Bacteriophages can provide highly specific targeting of bacteria, but assembling well-defined phage cocktails solely with natural phages can be a time-, labor- and cost-intensive process. Here, we present a synthetic biology strategy to modulate phage host ranges by engineering phage genomes in Saccharomyces cerevisiae. We used this technology to redirect Escherichia coli phage scaffolds to target pathogenic Yersinia and Klebsiella bacteria, and conversely, Klebsiella phage scaffolds to target E. coli by modular swapping of phage tail components. The synthetic phages achieved efficient killing of their new target bacteria and were used to selectively remove bacteria from multi-species bacterial communities with cocktails based on common viral scaffolds. We envision this approach accelerating phage biology studies and enabling new technologies for bacterial population editing.
Resumo:
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.
Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering
Resumo:
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
This paper deals with the problem of estimation maintenance costs for the case of the pitch controls system of wind farms turbines. Previous investigations have estimated these costs as (traditional) “crisp” values, simply ignoring the uncertainty nature of data and information available. This paper purposes an extended version of the estimation model by making use of the Fuzzy Set Theory. The results alert decision-makers to consequent uncertainty of the estimations along with their overall level, thus improving the information given to the mainte-nance support system.
Resumo:
The Prognostic Health Management (PHM) has been asserting itself as the most promising methodology to enhance the effective reliability and availability of a product or system during its life-cycle conditions by detecting current and approaching failures, thus, providing mitigation of the system risks with reduced logistics and support costs. However, PHM is at an early stage of development, it also expresses some concerns about possible shortcomings of its methods, tools, metrics and standardization. These factors have been severely restricting the applicability of PHM and its adoption by the industry. This paper presents a comprehensive literature review about the PHM main general weaknesses. Exploring the research opportunities present in some recent publications, are discussed and outlined the general guide-lines for finding the answer to these issues.
Resumo:
Firefly Algorithm is a recent swarm intelligence method, inspired by the social behavior of fireflies, based on their flashing and attraction characteristics [1, 2]. In this paper, we analyze the implementation of a dynamic penalty approach combined with the Firefly algorithm for solving constrained global optimization problems. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.
Resumo:
Publicado em "AIP Conference Proceedings" Vol. 1648
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão Industrial
Resumo:
Dissertação de mestrado em Engenharia e Gestão da Qualidade
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
A novel approach for tissue engineering applications based on the use of magnetoelectric materials is presented. This work proves that magnetoelectric Terfenol-D/poly(vinylidene fluoride-co-trifluoroethylene) composites are able to provide mechanical and electrical stimuli to MC3T3-E1 pre-osteoblast cells and that those stimuli can be remotely triggered by an applied magnetic field. Cell proliferation is enhanced up to 25% when cells are cultured under mechanical (up to 110 ppm) and electrical stimulation (up to 0.115 mV), showing that magnetoelectric cell stimulation is a novel and suitable approach for tissue engineering allowing magnetic, mechanical and electrical stimuli.
Resumo:
COST Action TU1406 aims to address the European economic and societal needs by standardizing the condition assessment and maintenance level of roadway bridges. Currently, bridge quality control plans vary from country to country and, in some cases, within the same country. This therefore urges the establishment of a European guideline to surpass the lack of a standard methodology to assess bridge condition and to define quality control plans for roadway bridges. Such a guideline will comprise specific recommendations for assessing performance indicators as well as for the definition of performance goals, bringing together different stakeholders (e.g. universities, institutes, operators, consultants and owners) from various scientific disciplines (e.g. on-site testing, visual inspection, structural engineering, sustainability, etc.) in order to establish a common transnational language. COST Action TU1406 Workshops aim to facilitate the exchange of ideas and experiences between active researchers and practitioners as well as to stimulate discussions on new and emerging issues in line with the conference topics. This first Workshop essentially focuses on WG1 issues, namely, intends to address performance indicators, how these are assessed (e.g. visual inspection, nondestructive tests and monitoring systems), with what frequency and what values are generally obtained. The main outcomes, given in this eBook, were really important, not only for WG1 developments, but also for all the other WGs and for the Action itself.
Resumo:
Gold nanorods (AuNRs) have emerged as an exceptional nanotool for a myriad of applications ranging from cancer therapy to tissue engineering. However, their surface modification with biocompatible and stabilizing biomaterials is crucial to allow their use in a biological environment. Herein, low-acyl gellan gum (GG) was used to coat AuNRs surface, taking advantage of its stabilizing, biocompatible and gelling features. The layer-by-layer based strategy implied the successive deposition of poly(acrylic acid), poly(allylamine hydrochloride) and GG, which allowed the formation of a GG hydrogel-like shell with 7 nm thickness around individual AuNRs. Stability studies in a wide range of pH and salt concentrations showed that the polysaccharide coating can prevent AuNRs aggregation. Moreover, a reversible pH-responsive feature of the nanoparticles was observed. Cytocompatibility and osteogenic ability of GG-coated AuNRs was also addressed. After 14 days of culturing within SaOS-2, an osteoblast-like cell line, in vitro studies revealed that AuNRs-GG exhibit no cytotoxicity, were internalized by the cells and localized inside lysosomes. AuNRs-GG combined with osteogenic media enhanced the mineralization capacity two-fold, as compared to cells exposed to osteogenic media alone. The proposed system has shown interesting features for osteogenesis, and further insights might be relevant for drug delivery, tissue engineering and regenerative medicine.