23 resultados para MICROSTRUCTURED OPTICAL-FIBERS
Resumo:
The reinforcement of soil is defined as an effective and reliable technique to improve strength and stability. For this propose, the use of natural fibers has been commonly. Over the past years, a series of studies have been performed in order to investigate the influence of randomly oriented fibers, especially for compressible clayey soils. However, less attention has been given to the reinforcing of sandy materials, as well as the use of oriented fibers meshes in order to improve mechanical behaviour. The main aim of this study is to identify the influence that different percentages of fibers, as well as the use of meshes of oriented fibers, has on soil mechanical behaviour. For this purpose, unconfined compression tests with local strain measurements were performed on a silty sand reinforced with Sisal fibers and a comparative study between randomly oriented and 0° and 90° fibers is presented.
Resumo:
The computation of the optical conductivity of strained and deformed graphene is discussed within the framework of quantum field theory in curved spaces. The analytical solutions of the Dirac equation in an arbitrary static background geometry for one dimensional periodic deformations are computed, together with the corresponding Dirac propagator. Analytical expressions are given for the optical conductivity of strained and deformed graphene associated with both intra and interbrand transitions. The special case of small deformations is discussed and the result compared to the prediction of the tight-binding model.
Resumo:
CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.
Resumo:
This paper presents microlenses (MLs) with low f-number made of AZ4562 photoresist for integration on optical microsystems. The fabrication process was based on the thermal reflow and rehydration. Large series of MLs were fabricated with a width of 35 μm, a thickness of 5 μm, and spaced apart by 3 μm. The MLs were fabricated directly on the surface of a die with type n+/p-substrate junction photodiode fabricated in a standard CMOS process. The measured focal length was 49 μm with a tolerance of ±2 μm (maximum error of ±4%), resulting in a numerical aperture of 33.6 × 10-2 (±1.3 × 10-2). The measurements also revealed an f-number of 1.4.
Resumo:
tThis work is devoted to the investigation of zirconium oxynitride (ZrOxNy) films with varied opticalresponses prompted by the variations in their compositional and structural properties. The films wereprepared by dc reactive magnetron sputtering of Zr, using Ar and a reactive gas mixture of N2+ O2(17:3).The colour of the films changed from metallic-like, very bright yellow-pale and golden yellow, for low gasflows to red-brownish for intermediate gas flows. Associated to this colour change there was a significantdecrease of brightness. With further increase of the reactive gas flow, the colour of the samples changedfrom red-brownish to dark blue or even to interference colourations. The variations in composition dis-closed the existence of four different zones, which were found to be closely related with the variationsin the crystalline structure. XRD analysis revealed the change from a B1 NaCl face-centred cubic zirco-nium nitride-type phase for films prepared with low reactive gas flows, towards a poorly crystallizedover-stoichiometric nitride phase, which may be similar to that of Zr3N4with some probable oxygeninclusions within nitrogen positions, for films prepared with intermediate reactive gas flows. For highreactive gas flows, the films developed an oxynitride-type phase, similar to that of -Zr2ON2with someoxygen atoms occupying some of the nitrogen positions, evolving to a ZrO2monoclinic type structurewithin the zone where films were prepared with relatively high reactive gas flows. The analysis carriedout by reflected electron energy loss spectroscopy (REELS) revealed a continuous depopulation of thed-band and an opening of an energy gap between the valence band (2p) and the Fermi level close to 5 eV.The ZrN-based coatings (zone I and II) presented intrinsic colourations, with a decrease in brightness anda colour change from bright yellow to golden yellow, red brownish and dark blue. Associated to thesechanges, there was also a shift of the reflectivity minimum to lower energies, with the increase of thenon-metallic content. The samples lying in the two last zones (zone III, oxynitride and zone IV, oxide films)revealed a typical semi-transparent-optical behaviour showing interference-like colourations only dueto the complete depopulation of the d band at the Fermi level. The samples lying in these zones presentedalso an increase of the optical bandgap from 2 to 3.6 eV.
Resumo:
The focus of this paper is given to investigate the effect of different fibers on the pore pressure of fiber reinforced self-consolidating concrete under fire. The investigation on the pore pressure-time and temperature relationships at different depths of fiber reinforced self-consolidating concrete beams was carried out. The results indicated that micro PP fiber is more effective in mitigating the pore pressure than macro PP fiber and steel fiber. The composed use of steel fiber, micro PP fiber and macro PP fiber showed clear positive hybrid effect on the pore pressure reduction near the beam bottom subjected to fire. Compared to the effect of macro PP fiber with high dosages, the effect of micro PP fiber with low fiber contents on the pore pressure reduction is much stronger. The significant factor for reduction of pore pressure depends mainly on the number of PP fibers and not only on the fiber content. An empirical formula was proposed to predict the relative maximum pore pressure of fiber reinforced self-consolidating concrete exposed to fire by considering the moisture content, compressive strength and various fibers. The suggested model corresponds well with the experimental results of other research and tends to prove that the micro PP fiber can be the vital component for reduction in pore pressure, temperature as well spalling of concrete.
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos.
Resumo:
Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/ polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.