27 resultados para Liquid metal fast breeder reactors
Organic-inorganic hybrid sol-gelcoatings for metal corrosion protection: a review of recent progress
Resumo:
This paper is a review of the most recent and relevant achievements (from 2001 to 2013) on the development of organic–inorganic hybrid (OIH) coatings produced by sol–gel-derivedmethods to improve resistance to oxidation/corrosion of different metallic substrates and their alloys. This review is focused on the research of OIH coatings based on siloxanes using the sol–gel process conducted at an academic level and aims to summarize the materials developed and identify perspectives for further research. The fundamentals of sol–gel are described, including OIH classification, the interaction with the substrate, their advantages, and limitations. The main precursors used in the synthesis ofOIHsol–gel coatings for corrosion protection are also discussed, according to the metallic substrate used. Finally, a multilayer system to improve the resistance to corrosion is proposed, based on OIH coatings produced by the sol–gel process, and the future research challenges are debated.
Resumo:
New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C2mim][CnSO3], [C2mim][CnSO4] and [C2mim][diCnPO4]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes (SPE) membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10−4 S cm−1 and a wide electrochemical window of ∼ 4.0 V.
Resumo:
CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.
Resumo:
Comunicação em painel - P59
Resumo:
OBJECTIVE The aim of this study was to compare the performance of the current conventional Pap smear with liquid-based cytology (LBC) preparations. STUDY DESIGN Women routinely undergoing their cytopathological and histopathological examinations at Fundação Oncocentro de São Paulo (FOSP) were recruited for LBC. Conventional smears were analyzed from women from other areas of the State of São Paulo with similar sociodemographic characteristics. RESULTS A total of 218,594 cases were analyzed, consisting of 206,999 conventional smears and 11,595 LBC. Among the conventional smears, 3.0% were of unsatisfactory preparation; conversely, unsatisfactory LBC preparations accounted for 0.3%. The ASC-H (atypical squamous cells - cannot exclude high-grade squamous intraepithelial lesion) frequency did not demonstrate any differences between the two methods. In contrast, the incidence of ASC-US (atypical squamous cells of undetermined significance) was almost twice as frequent between LBC and conventional smears, at 2.9 versus 1.6%, respectively. An equal percentage of high-grade squamous intraepithelial lesions were observed for the two methods, but not for low-grade squamous intraepithelial lesions, which were more significantly observed in LBC preparations than in conventional smears (2.2 vs. 0.7%). The index of positivity was importantly enhanced from 3.0% (conventional smears) to 5.7% (LBC). CONCLUSIONS LBC performed better than conventional smears, and we are truly confident that LBC can improve public health strategies aimed at reducing cervical lesions through prevention programs.
Resumo:
Here, we evaluate the diagnostic and prognostic role of liquid-based cytology (LBC) in different body lesions, including thyroid, lung, effusions and malignant breast lesions. LBC has gained consensus after being applied to both non-gynecologic and fine-needle aspiration cytology. Although some remain sceptical regarding the diagnostic efficacy of LBC, mainly when used alone, in recent years, good results have been obtained as long as it showed a high diagnostic accuracy. Here, we discuss the additional possibility of storing material for the application of ancillary techniques (immunocytochemistry–molecular analysis) with several diagnostic and prognostic advantages, which may pave the way for the challenging evaluation of both monitoring responses to treatment and resistance to targeted therapies in thyroid, lung, breast carcinoma or malignant effusions. Furthermore, it provides the use of several molecular spots as specific targets for personalized therapy.
Resumo:
A highly robust hydrogel device made from a single biopolymer formulation is reported. Owing to the presence of covalent and non-covalent crosslinks, these engineered systems were able to (i) sustain a compressive strength of ca. 20 MPa, (ii) quickly recover upon unloading, and (iii) encapsulate cells with high viability rates.
Resumo:
Load-bearing soft tissues such as cartilage, blood vessels and muscles are able to withstand a remarkable compressive stress of several MPa without fracturing. Interestingly, most of these structural tissues are mainly composed of water and in this regard, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, constitute a promising class of materials to repair lesions on these tissues. Although several approaches can be employed to shape the mechanical properties of artificial hydrogels to mimic the ones found on biotissues, critical issues regarding, for instance, their biocompatibility and recoverability after loading are often neglected. Therefore, an innovative hydrogel device made only of chitosan (CHI) was developed for the repair of robust biological tissues. These systems were fabricated through a dual-crosslinking process, comprising a photo- and an ionic-crosslinking step. The obtained CHIbased hydrogels exhibited an outstanding compressive strength of ca. 20 MPa at 95% of strain, which is several orders of magnitude higher than those of the individual components and close to the ones found in native soft tissues. Additionally, both crosslinking processes occur rapidly and under physiological conditions, enabling cellsâ encapsulation as confirmed by high cell survival rates (ca. 80%). Furthermore, in contrast with conventional hydrogels, these networks quickly recover upon unloading and are able to keep their mechanical properties under physiological conditions as result of their non-swell nature.
Resumo:
Dissertação de mestrado em Applied Biochemistry (área de especialização em Biomedicine)
Resumo:
The present work aims to contribute for the elucidation of the role of oxidative stress in the toxicity associated with the exposure of Pichia kudriavzevii to multi-metals (Cd, Pb and Zn). Cells of the non-conventional yeast P. kudriavzevii exposed for 6 h to the action of multi-metals accumulated intracellular reactive oxygen species (ROS), evaluated through the oxidation of the probe 2,7-dichlorodihydrofluorescein diacetate. A progressive loss of membrane integrity (monitored using propidium iodide) was observed in multi-metal-treated cells. The triggering of intracellular ROS accumulation preceded the loss of membrane integrity. These results suggest that the disruption of membrane integrity can be attributed to the oxidative stress. The exposure of yeast cells to single metal showed that, under the concentrations tested, Pb was the metal responsible for the induction of the oxidative stress. Yeast cells coexposed to an antioxidant (ascorbic acid) and multi-metals did not accumulate intracellular ROS, but loss proliferation capacity. Together, the data obtained indicated that intracellular ROS accumulation contributed to metal toxicity, namely for the disruption of membrane integrity of the yeast P. kudriavzevii. It was proposed that Pb toxicity (the metal responsible for the toxic symptoms under the conditions tested) result from the combination of an ionic mechanism and the intracellular ROS accumulation.
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos.
Resumo:
Vapor - liquid equilibrium data for the binary systems: Perfluoromethylcyclohexane + n-Hexane and Perfluoromethylcyclohexane + 1-Hexene were determined at 93.3 KPa and 328.15 K. The vapor pressure for the pure components were also measured to calculate the Antoine constants. The data were correlated by using the Van-Laar, Margules, Wilson, NRTL and UNIQUAC equations. UNIFAC group-contribution parameters between CH, and CF,, and CH,=CH and CF, were also calculated.