48 resultados para Impulsive Loading
Resumo:
Masonry is a non-homogeneous material, composed of units and mortar, which can be of different types, with distinct mechanical properties. The design of both masonry units and mortar is based on the role of the walls in the building. Load-bearing walls relate to structural elements that bear mainly vertical loads, but can serve also to resist to horizontal loads. When a structural masonry building is submitted to in-plane and out-of-plane loadings induced by an earthquake for example, the masonry walls are the structural elements that ensure the global stability of the building. This means that the walls should have adequate mechanical properties that enable them to resist to different combinations of compressive, shear and tensile stresses.The boundary conditions influence the resisting mechanisms of the structural walls under in-plane loading and in a buildings the connection at the intersection walls are of paramount importance for the out-of-plane resisting mechanism. However, it is well established that the masonry mechanical properties are also relevant for the global mechanical performance of the structural masonry walls. Masonry units for load-bearing walls are usually laid so that their perforations are vertically oriented, whereas for partition walls, brick units with horizontal perforation are mostly adopted.
Resumo:
A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.
Resumo:
Relatório de estágio de mestrado em Educação Pré-Escolar e Ensino do 1ºCiclo do Ensino Básico
Resumo:
The obesity prevalence is increasing among the workforce of the developed countries. However, obesity seems to negatively affect the individuals’ work performance. In occupational contexts, manual lifting tasks are frequent and can produce significant muscle loading. With the aim of analysing the possible effect of obesity on workers’ muscular activation, surface electromyography data were collected from six muscles recruited during these tasks. In the current study, 6 different tasks of manual lifting (3 loads × 2 lifting styles) were performed by 14 participants with different obesity levels. Electromyography data normalization was based on the percentage of maximum contraction during each task. The muscles’ activation times before each task were also calculated. The current study suggests that obesity can increase the maximum contraction during each task and the delays on muscles’ activation time. This study suggests that obese individuals can present some changes on their muscle activation during lifting, when comparing with non-obese individuals, and reinforces the need to develop further studies focused on obesity as a risk factor for musculoskeletal disorders development.
Resumo:
An exterior body panel solution containing a polydicyclopentadiene skin attached to an interior metallic reinforcement through adhesive bonding is being studied to be applied in the MobiCar bonnet. With this solution is expected to achieve lightness, adequate structural integrity and cost-efficiency. However, there is uncertainty regarding to the bonnet adhesiveness since different metallic materials and adhesive types are being considered for its development. Thus, in this paper, several samples are tested through shear loading with the aim of understanding the loading magnitude expected by using polydicyclopentadiene, steel DC04+ZE and aluminum alloy AW5754-H111 as substrates adhesively bonded by an epoxy or a methacrylate. Methacrylate adhesive have shown greater shear strength in all types of adhesive joints. PDCPD joints presented the highest displacements. Surface degradation was considered adequate over abrading once none strength difference was seen between the different surface treatments. Steel treated by cataphoresis has shown the highest joint interface strength.
Resumo:
Tese de Doutoramento Biologia Molecular e Ambiental - Especialidade em Biologia Celular e Saúde
Resumo:
Tese de Doutoramento - Civil Engineering
Resumo:
Poly(vinylidene fluoride-trifluoroethylene)/NaY zeolite composite membranes were prepared by solvent casting and evaluated as a suitable drug release platform through the evaluation of loading and release of ibuprofen. The membranes were characterized at the morphological, structural and mechanical levels. The 1H-NMR spectra indicate that only the membranes with 16 and 32 % of NaY were useful for IBU encapsulation and the drug release was followed by UV-Vis spectroscopy. The release profile is independent of the zeolite content and can be described by the Korsmeyer-Peppas model. The membrane with 32 % zeolite content releases more than double IBU amount when compared with the membrane with 16 % showing that zeolite content allows tailoring membrane drug release content for specific applications. The drug release platform developed in this work is suitable for other drugs and applications.
Resumo:
In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in Poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.
Resumo:
Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and subjected to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behaviour of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow’s criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
The present study proposes a dynamic constitutive material interface model that includes non-associated flow rule and high strain rate effects, implemented in the finite element code ABAQUS as a user subroutine. First, the model capability is validated with numerical simulations of unreinforced block work masonry walls subjected to low velocity impact. The results obtained are compared with field test data and good agreement is found. Subsequently, a comprehensive parametric analysis is accomplished with different joint tensile strengths and cohesion, and wall thickness to evaluate the effect of the parameter variations on the impact response of masonry walls.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
The cyclic load triaxial test is a laboratory test that allows studying the mechanical behaviour of unbound granular materials used in base/subbase layers of road pavements. The resilient modulus and permanent strains are required as inputs in structural pavement design. This paper presents some results obtained for recycled materials (crushed concrete aggregate and blended crushed waste aggregate), with a view to promoting their use in pavement structures. Results relating to a reference material (limestone) are also presented, for comparison. All the test results discussed in this paper were obtained in variable cyclic radial pressure (VCP) tests. The tests performed (VCP) aim to study the influence of water content on the resilient modulus of recycled materials, as well as on the resistance to permanent deformation. Using the experimental data as a basis, further modelling work was carried out to establish the stresses developing in base/capping layers in typical Belgian road pavements. These numerical results allow to propose some simplifications of the stress paths applied in the testing procedures and to establish a new test protocol that also considers compaction during construction works. The results of this research work provide an excellent set of findings for the mechanical characterization of unbound base materials through the cyclic triaxial test, and contribute to a better understanding and correct application of recycled materials under geotechnical engineering background