21 resultados para FLUORESCENCE QUANTUM EFFICIENCY
Resumo:
Tese de Doutoramento em Biologia de Plantas
Resumo:
The presence of mycotoxins in foodstuff is a matter of concern for food safety. Mycotoxins are toxic secondary metabolites produced by certain molds, being ochratoxin A (OTA) one of the most relevant. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A (OTA) [1]. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [2]. The maximum acceptable level of OTA in wines is 2.0 g/kg according to the Commission regulation No. 1881/2006 [3]. Therefore, the aim of this work was to reduce OTA to safer levels using different fining agents, as well as their impact on white wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white wine. Trials (including a control without addition of a fining agent) were performed in white wine artificially supplemented with OTA (10 µg/L). OTA analysis were performed after wine fining. Wine was centrifuged at 4000 rpm for 10 min and 1 mL of the supernatant was collected and added of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v). Also, the solid fractions obtained after fining, were centrifuged (4000 rpm, 15 min), the resulting supernatant discarded, and the pellet extracted with 1 mL of the above solution and 1 mL of H2O. OTA analysis was performed by HPLC with fluorescence detection according to Abrunhosa and Venâncio [4]. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. Following, the effectiveness of seven commercial activated carbons was also evaluated and compared with the commercial formulation that contains gelatine, bentonite and activated carbon. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. Trial and OTA analysis were performed as explained previously. The results showed that in white wine all activated carbons except one reduced 100% of OTA. The commercial formulation that contains gelatine, bentonite and activated carbon (C8) reduced only 73% of OTA concentration. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.
Resumo:
Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300 nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.
Resumo:
Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/07900627.2015.1070091. It includes an easy-to-use spreadsheet that calculates the efficiencies used in this paper, that is Sefficiency with energy considerations.
Resumo:
Fluorescence in situ hybridization (FISH) is based on the use of fluorescent staining dyes, however, the signal intensity of the images obtained by microscopy is seldom quantified with accuracy by the researcher. The development of innovative digital image processing programs and tools has been trying to overcome this problem, however, the determination of fluorescent intensity in microscopy images still has issues due to the lack of precision in the results and the complexity of existing software. This work presents FISHji, a set of new ImageJ methods for automated quantification of fluorescence in images obtained by epifluorescence microscopy. To validate the methods, results obtained by FISHji were compared with results obtained by flow cytometry. The mean correlation between FISHji and flow cytometry was high and significant, showing that the imaging methods are able to accurately assess the signal intensity of fluorescence images. FISHji are available for non-commercial use at http://paginas.fe.up.pt/nazevedo/.
Resumo:
Tese de Doutoramento em Engenharia Civil.