127 resultados para Experimental results


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the fracture mode I parameters of steel fibre reinforced self-compacting concrete (SFRSCC) were derived from the numerical simulation of indirect splitting tensile tests. The combined experimental and numerical research allowed a comparison between the stress-crack width (σ - w) relationship acquired straightforwardly from direct tensile tests, and the σ - w response derived from inverse analysis of the splitting tensile tests results. For this purpose a comprehensive nonlinear 3D finite element (FE) modeling strategy was developed. A comparison between the experimental results obtained from splitting tensile tests and the corresponding FE simulations confirmed the good accuracy of the proposed strategy to derive the σ – w for these composites. It is concluded that the post-cracking tensile laws obtained from inverse analysis provided a close relationship with the ones obtained from the experimental uniaxial tensile tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Externally bonded strengthening of masonry structures using Fiber Reinforced Polymers (FRPs) has been accepted as a promising technique. Although the effectiveness of FRPs in improving the performance of masonry components has been extensively investigated, their long-term performance and durability remain poorly addressed. This paper, tackling one of the aspects related to durability of these systems, presents an experimental investigation on the effect of long-term (one year) water immersion on the performance of GFRP-strengthened bricks. The tests include materials' mechanical tests, as well as pull-off and single-lap shear bond tests, to investigate the changes in material properties and bond behavior with immersion time, respectively. The effect of mechanical surface treatment on the durability of the strengthened system as well as the reversibility of the degradation upon partial drying are also investigated. The experimental results are presented and critically discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A conventional method for seismic strengthening of masonry walls is externally application of reinforced concrete layer (shotcrete). However, due to the lack of analytical and experimental information on the behavior of strengthened walls, the design procedures are usually followed based on the empirical relations. Using these design procedures have resulted in massive strengthening details in retrofitting projects. This paper presents a computational framework for nonlinear analysis of strengthened masonry walls and its versatility has been verified by comparing the numerical and experimental results. Based on the developed numerical model and available experimental information, design relations and failure modes are proposed for strengthened walls in accordance with the ASCE 41 standard. Finally, a sample masonry structure has been strengthened using the proposed and available conventional methods. It has been shown that using the proposed method results in lower strengthening details and appropriate (ductile) failure modes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of Near Surface Mounted (NSM) Fiber Reinforced Polymers (FRPs) for strengthening masonry structures can be a suitable substitute for Externally Bonded Reinforcement (EBR) technique. NSM technique has many advantages such as larger bonded area, better anchorage capacity, higher resistance, higher percentage exploitation of the FRP and reduced installation time. However, information regarding the effectiveness of this strengthening technique for masonry structures is scarce and characterization of the critical mechanisms such as bond behavior is necessary. This paper presents experimental investigation of the bond performance in NSM-strengthened brick specimens. CFRP laminates are used for NSM strengthening of masonry bricks with different bonded lengths. The bond between FRP and masonry substrate is investigated by performing conventional pull-out tests and the experimental results are presented and discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Innovative composite materials made of continuous fibers embedded in mortar matrices have been recently received attention for externally bonded reinforcement of masonry structures. In this regards, application of natural fibers for strengthening of the repair mortars is attractive due to their low specific weight, sustainability and recycability. This paper presents experimental characterization of tensile and pull-out behavior of natural fibers embedded in two different mortar-based matrices. A lime-based and a geopolymeric-based mortar are used as sustainable and innovative matrices. The obtained experimental results and observations are presented and discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dearth of knowledge on the load resistance mechanisms of log houses and the need for developing numerical models that are capable of simulating the actual behaviour of these structures has pushed efforts to research the relatively unexplored aspects of log house construction. The aim of the research that is presented in this paper is to build a working model of a log house that will contribute toward understanding the behaviour of these structures under seismic loading. The paper presents the results of a series of shaking table tests conducted on a log house and goes on to develop a numerical model of the tested house. The finite element model has been created in SAP2000 and validated against the experimental results. The modelling assumptions and the difficulties involved in the process have been described and, finally, a discussion on the effects of the variation of different physical and material parameters on the results yielded by the model has been drawn up.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fiber Reinforced Polymers (FRPs) have been extensively used for externally bonded reinforcement of masonry structures during the last years. Available information shows that FRPs can significantly improve the seismic performance of masonry elements without altering their structural mass. However, the durability and long-term performance of the strengthened elements are not clearly known yet. Recent experimental results show that environmental conditions can lead to degradation of the bond between FRP and masonry and FRP delaminations. But the effect of these local degradation mechanisms on the global structural response is not studied yet. This paper is therefore aimed at numerically investigating the effect of environmental degradation on the global performance of strengthened masonry walls. The nonlinear behavior of masonry walls strengthened with FRP composites is initially simulated with the aim of a FE package. The adopted numerical modeling strategy is verified by comparison of numerical and experimental results. The model, once validated, is used for investigating the effect of materials and bond degradation on the global behavior and failure modes of strengthened walls. The effect of strengthening scheme on the long-term performance of strengthened walls is also investigated. The degradation data are taken from experimental tests previously performed by the authors. The numerical results show that the effect of local material degradation on the global response of strengthened walls depends on the strengthening schemes, and severity of the environmental conditions. Moreover, environmental induced degradations and FRP delaminations can lead to change of expected failure modes in the strengthened elements. These observations, that are usually neglected at the design stage, can be critical in the long-term performance of strengthened structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the past decade, the research community has been dedicating considerable effort into indoor positioning systems based on Wi-Fi fingerprinting techniques, mainly due to their capability to exploit existing infrastructures. Crowdsourcing approaches, also known as organic, have been proposed recently to address the problem of creating and maintaining the corresponding radio maps. In these organic systems, the users of the system build the radio map themselves while using it to estimate their own position/location. However, most of these collaborative methods, proposed by several authors, assume that all the users are honest and committed to contribute to a good quality radio map. In this paper we assess the quality of a radio map built collaboratively and propose a method to classify the credibility of individual contributions and the reputation of individual users. Experimental results are presented for an organic indoor location system that has been used by more than one hundred users over a period of around 12 months.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data traces, consisting of logs about the use of mobile and wireless networks, have been used to study the statistics of encounters between mobile nodes, in an attempt to predict the performance of opportunistic networks. Understanding the role and potential of mobile devices as relaying nodes in message dissemination and delivery depends on the knowledge about patterns and number of encounters among nodes. Data traces about the use of WiFi networks are widely available and can be used to extract large datasets of encounters between nodes. However, these logs only capture indirect encounters between nodes, and the resulting encounters datasets might not realistically represent the spatial and temporal behaviour of nodes. This paper addresses the impact of overlapping between the coverage areas of different Access Points of WiFi networks in extracting encounters datasets from the usage logs. Simulation and real-world experimental results show that indirect encounter traces extracted directly from these logs strongly underestimate the opportunities for direct node-to- node message exchange in opportunistic networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a comparison between three switching techniques that can be used in three-phase four-wire Shunt Active Power Filters (SAPFs). The implemented switching techniques are: Periodic-Sampling (PS), Triangular Carrier Pulse-Width Modulation (TC-PWM) and Space Vector PWM (SVPWM). The comparison between them is made in terms of the compensated currents THD%, implementation complexity, necessary CPU time and SAPF efficiency. To perform this comparison are presented and analyzed several experimental results, obtained with a 20 kVA Shunt Active Power Filter prototype, specially developed for this purpose. The control system of the developed SAPF is based in the p-q Theory with a grid synchronization algorithm p-PLL.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the development of na on-board bidirectional battery charger for Electric Vehicles (EVs) targeting Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G), and Vehicle-to-Home (V2H) technologies. During the G2V operation mode the batteries are charged from the power grid with sinusoidal current and unitary power factor. During the V2G operation mode the energy stored in the batteries can be delivered back to the power grid contributing to the power system stability. In the V2H operation mode the energy stored in the batteries can be used to supply home loads during power outages, or to supply loads in places without connection to the power grid. Along the paper the hardware topology of the bidirectional battery charger is presented and the control algorithms are explained. Some considerations about the sizing of the AC side passive filter are taken into account in order to improve the performance in the three operation modes. The adopted topology and control algorithms are accessed through computer simulations and validated by experimental results achieved with a developed laboratory prototype operating in the different scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the optimization of an extrusion die designed for the production of a wood–plastic composite (WPC) decking profile is investigated. The optimization was performed with the help of numerical tools, more precisely, by solving the continuity and momentum conservation equations that govern such flow, and aiming to balance properly the flow distribution at the extrusion die flow channel outlet. To capture the rheological behavior of the material, we used a Bird-Carreau model with parameters obtained from a fit to the (shear viscosity versus shearrate) experimental data, collected from rheological tests. To yield a balanced output flow, several numerical runs were performed by adjusting the flow restriction at different regions of the flow-channel parallel zone crosssection. The simulations were compared with the experimental results and an excellent qualitative agreement was obtained, allowing, in this way, to attain a good balancing of the output flow and emphasizing the advantages of using numerical tools to aid the design of profile extrusion dies.