51 resultados para Design variables
Resumo:
In this work, the optimization of an extrusion die designed for the production of a wood–plastic composite (WPC) decking profile is investigated. The optimization was performed with the help of numerical tools, more precisely, by solving the continuity and momentum conservation equations that govern such flow, and aiming to balance properly the flow distribution at the extrusion die flow channel outlet. To capture the rheological behavior of the material, we used a Bird-Carreau model with parameters obtained from a fit to the (shear viscosity versus shearrate) experimental data, collected from rheological tests. To yield a balanced output flow, several numerical runs were performed by adjusting the flow restriction at different regions of the flow-channel parallel zone crosssection. The simulations were compared with the experimental results and an excellent qualitative agreement was obtained, allowing, in this way, to attain a good balancing of the output flow and emphasizing the advantages of using numerical tools to aid the design of profile extrusion dies.
Resumo:
[Extrat] Thermoplastic profiles are very attractive due to their inherent design freedom. However, the usual methodologies employed to design extrusion forming tools, based on experimental based trial–and–error procedures, are highly dependent on the designer’s experience and lead to high resources consumption. Despite of the relatively low cost of the raw materials employed on the production of this type of profiles, the resources involved in the die design process significantly increase their cost. These difficulties are even more evident when a complex geometry profile has to be produced and there is no previous experience with similar geometries. Therefore, novel design approaches are required, in order to reduce the required resources and guarantee a good performance for the produced profile. (...)
Resumo:
Due to the fact that different injection molding conditions tailor the mechanical response of the thermoplastic material, such effect must be considered earlier in the product development process. The existing approaches implemented in different commercial software solutions are very limited in their capabilities to estimate the influence of processing conditions on the mechanical properties. Thus, the accuracy of predictive simulations could be improved. In this study, we demonstrate how to establish straightforward processing-impact property relationships of talc-filled injection-molded polypropylene disc-shaped parts by assessing the thermomechanical environment (TME). To investigate the relationship between impact properties and the key operative variables (flow rate, melt and mold temperature, and holding pressure), the design of experiments approach was applied to systematically vary the TME of molded samples. The TME is characterized on computer flow simulation outputsanddefined bytwo thermomechanical indices (TMI): the cooling index (CI; associated to the core features) and the thermo-stress index (TSI; related to the skin features). The TMI methodology coupled to an integrated simulation program has been developed as a tool to predict the impact response. The dynamic impact properties (peak force, peak energy, and puncture energy) were evaluated using instrumented falling weight impact tests and were all found to be similarly affected by the imposed TME. The most important molding parameters affecting the impact properties were found to be the processing temperatures (melt andmold). CI revealed greater importance for the impact response than TSI. The developed integrative tool provided truthful predictions for the envisaged impact properties.
Resumo:
Specific tissues, such as cartilage undergo mechanical solicitation under their normal performance in human body. In this sense, it seems necessary that proper tissue engineering strategies of these tissues should incorporate mechanical solicitations during cell culture, in order to properly evaluate the influence of the mechanical stimulus. This work reports on a user-friendly bioreactor suitable for applying controlled mechanical stimulation - amplitude and frequency - to three dimensional scaffolds. Its design and main components are described, as well as its operation characteristics. The modular design allows easy cleaning and operating under laminar hood. Different protocols for the sterilization of the hermetic enclosure are tested and ensure lack of observable contaminations, complying with the requirements to be used for cell culture. The cell viability study was performed with KUM5 cells.
Resumo:
In spite of all innovations in stent design, commonly used metallic stents present several problems such as corrosion, infection and restenosis, leading to health complications or even death of patients. In this context, the present paper reports a systematic investigation on designing and development of 100% fiber based stents, which can eliminate or minimize the problems with existing metallic stents. For this purpose, braided stents were produced by varying different materials, structural and process parameters such as mono-filament type and diameter, braiding angle and mandrel diameter. The influence of these design parameters on mechanical behavior as well as stent's porosity was thoroughly investigated, and suitable parameters were selected for developing a stentwith mechanical characteristics and porosity matching with the commercial stents. According to the experimental results, the best performance was achieved with a polyester stent designed with 0.27 mm monofilament diameter, braiding angle of 35° and mandrel diameter of 6 mm, providing similar properties to commercial Nitinol stents.
A violência entre pares na adolescência: desenvolvimento e implementação de um programa de prevenção
Resumo:
Tese de Doutoramento em Psicologia (área de especialização em Psicologia da Justiça).
Resumo:
Tese de Doutoramento Engenharia Têxtil.
Resumo:
O conceito de qualidade de vida surge pela primeira vez em 1920, através do economista inglês Arthur Cecil Pigou, que utiliza este termo para descrever o impacto governamental sobre a vida das pessoas mais desfavorecidas. Com a instalação de uma era industrializada e com o fim da 2º Guerra Mundial, a sociedade mudou de paradigma e iniciou uma procura incessante de formas para melhorar a sua qualidade de vida. Este conceito desenvolve-se juntamente com o desenvolvimento do conceito de educação, saúde, habitação, transporte, trabalho e lazer, bem como indicadores do aumento da esperança de vida, a diminuição da mortalidade infantil e dos níveis de poluição. O avanço da tecnologia teve um papel fundamental para a evolução desses conceitos, bem como o Design na procura de soluções para aplicação dessas mesmas tecnologias. No caso concreto da indústria tèxtil, a tendência é o desenvolvimento de têxteis inteligentes envolvendo a engenharia electrónica no seu processo de conceptualização e de fabrico. A chamada tecnologia wearable abre novos horizontes para a criação de soluções inovadoras, abrindo novos nichos de mercado com elevado valor acrescentado. Existem atualmente vários produtos no mercado cuja funcionalidade e utilidade lhes conferiu um estatuto imutável ao longo dos anos, onde a evolução não avançou na tendência atual. Esse é o caso dos tecidos estreitos, cuja funcionalidade poderá adquirir novas capacidades e ser utilizada em diferentes componentes têxteis nas mais variadas áreas. Essas capacidades poderão ser acrescentadas pela incorporação de materiais com luminosidade (Led’s e L-Wire) nas suas estruturas. Neste estudo realizado o design de produtos com novas funcionalidades, adaptando as tecnologias até agora desenvolvidas em novas soluções e/ou novas recriações de produto.
Resumo:
During last years, photophysical properties of complexes of semiconductor quantum dots (QDs) with organic dyes have attracted increasing interest. The development of different assemblies based on QDs and organic dyes allows to increase the range of QDs applications, which include imaging, biological sensing and electronic devices.1 Some studies demonstrate energy transfer between QDs and organic dye in assemblies.2 However, for electronic devices purposes, a polymeric matrix is required to enhance QDs photostability. Thus, in order to attach the QDs to the polymer surface it is necessary to chemically modify the polymer to induce electronic charges and stabilize the QDs in the polymer. The present work aims to investigate the design of assemblies based on polymer-coated QDs and an integrated acceptor organic dye. Polymethylmethacrylate (PMMA) and polycarbonate (PC) were used as polymeric matrices, and nile red as acceptor. Additionally, a PMMA matrix modified with 2-mercaptoethylamine is used to improve the attachment between both the donor (QDs) and the acceptor (nile red), as well as to induce a covalent bond between the modified PMMA and the QDs. An enhancement of the energy transfer efficiency by using the modified PMMA is expected and the resulting assembly can be applied for energy harvesting.
Resumo:
Open Display Networks have the potential to allow many content creators to publish their media to an open-ended set of screen displays. However, this raises the issue of how to match that content to the right displays. In this study, we aim to understand how the perceived utility of particular media sharing scenarios is affected by three independent variables, more specifically: (a) the locativeness of the content being shared; (b) how personal that content is and (c) the scope in which it is being shared. To assess these effects, we composed a set of 24 media sharing scenarios embedded with different treatments of our three independent variables. We then asked 100 participants to express their perception of the relevance of those scenarios. The results suggest a clear preference for scenarios where content is both local and directly related to the person that is publishing it. This is in stark contrast to the types of content that are commonly found in public displays, and confirms the opportunity that open displays networks may represent a new media for self-expression. This novel understanding may inform the design of new publication paradigms that will enable people to share media across the display networks.
Resumo:
Programa Doutoral em Engenharia Industrial e de Sistemas.
Resumo:
Este artigo descreve a experiência prática de um trabalho realizado em sala de aula, que trata de agregar técnicas facilitadoras do desenvolvimento da criatividade, num processo de criação de moda. O método usado foi adaptado para o design de moda, através da utilização das técnicas de “brainstorming”, “mapas mentais” e “painéis semânticos” conjugados num exercício prático-experimental de criatividade. O objetivo deste estudo consiste em analisar o desempenho criativo dos alunos e as possibilidades resultantes da utilização e adaptação de tais metodologias de criatividade em design de moda.
Resumo:
ISSN 19820941
Resumo:
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.