27 resultados para Deep crustal structure
Resumo:
Tantalum oxynitride thin films were produced by magnetron sputtering. The films were deposited usinga pure Ta target and a working atmosphere with a constant N2/O2ratio. The choice of this constant ratiolimits the study concerning the influence of each reactive gas, but allows a deeper understanding of theaspects related to the affinity of Ta to the non-metallic elements and it is economically advantageous.This work begins by analysing the data obtained directly from the film deposition stage, followed bythe analysis of the morphology, composition and structure. For a better understanding regarding theinfluence of the deposition parameters, the analyses are presented by using the following criterion: thefilms were divided into two sets, one of them produced with grounded substrate holder and the otherwith a polarization of −50 V. Each one of these sets was produced with different partial pressure of thereactive gases P(N2+ O2). All the films exhibited a O/N ratio higher than the N/O ratio in the depositionchamber atmosphere. In the case of the films produced with grounded substrate holder, a strong increaseof the O content is observed, associated to the strong decrease of the N content, when P(N2+ O2) is higherthan 0.13 Pa. The higher Ta affinity for O strongly influences the structural evolution of the films. Grazingincidence X-ray diffraction showed that the lower partial pressure films were crystalline, while X-rayreflectivity studies found out that the density of the films depended on the deposition conditions: thehigher the gas pressure, the lower the density. Firstly, a dominant -Ta structure is observed, for lowP(N2+ O2); secondly a fcc-Ta(N,O) structure, for intermediate P(N2+ O2); thirdly, the films are amorphousfor the highest partial pressures. The comparison of the characteristics of both sets of produced TaNxOyfilms are explained, with detail, in the text.
Resumo:
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζτ(k) controlling the singularities for both the longitudinal  and transverse (τ = t) dynamical structure factors for the whole momentum range  , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Resumo:
A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different APIs, namely acetylsalicylic acid (AA), benzoic acid (BA) and phenylacetic acid (PA), were synthesized and characterized for thermal behaviour, structural features, dissolution rate and antibacterial activity. Differential scanning calorimetry and polarized optical microscopy showed that ChCl:PA (1:1), ChCl:AA (1:1), menthol:AA (3:1), menthol:BA (3:1), menthol:PA (2:1) and menthol:PA (3:1) were liquid at room temperature. Dissolution studies in PBS led to increased dissolution rates for the APIs when in the form of THEDES, compared to the API alone. The increase in dissolution rate was particularly noticeable for menthol-based THEDES. Antibacterial activity was assessed using both Gram-positive and Gram-negative model organisms. The results show that all the THEDESs retain the antibacterial activity of the API. Overall, our results highlight the great potential of THEDES as dissolution enhancers in the development of novel and more effective drug delivery systems.
Resumo:
Natural deep eutectic solvents (NADES) have shown to be promising sustainable media for a wide range of applications. Nonetheless, very limited data is available on the properties of these solvents. A more comprehensive body of data on NADES is required for a deeper understanding of these solvents at molecular level, which will undoubtedly foster the development of new applications. NADES based on choline chloride, organic acids, amino acids and sugars were prepared, and their density, thermal behavior, conductivity and polarity were assessed, for different NADES compositions. The NADES studied can be stable up to 170 °C, depending on their composition. The thermal characterization revealed that all the NADES are glass formers and some, after water removal, exhibit crystallinity. The morphological characterization of the crystallizable materials was performed using polarized optical microscopy which also provided evidence of homogeneity/phase separation. The conductivity of the NADES was also assessed from 0 to 40 °C. The more polar, organic acid-based NADES presented the highest conductivities. The conductivity dependence on temperature was well described by the Vogelâ Fulcherâ Tammann equation for some of the NADES studied.
Resumo:
This Special Issue gathers selected contributions from the 1st Congress on Food Structure Design, covering most of the topics described above.
Resumo:
We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (ξ), the cross-sectional polymer chain radius (Rc) and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels.
Resumo:
Degree of Doctor of Philosophy of Structural/Civil Engineering
Resumo:
The present study aimed to investigate the effect of structure (design and porosity) on the matrix stiffness and osteogenic activity of stem cells cultured on poly(ester-urethane) (PEU) scaffolds. Different three-dimensional (3D) forms of scaffold were prepared from lysine-based PEU using traditional salt-leaching and advanced bioplotting techniques. The resulting scaffolds were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury porosimetry and mechanical testing. The scaffolds had various pore sizes with different designs, and all were thermally stable up to 300â °C. In vitrotests, carried out using rat bone marrow stem cells (BMSCs) for bone tissue engineering, demonstrated better viability and higher cell proliferation on bioplotted scaffolds compared to salt-leached ones, most probably due to their larger and interconnected pores and stiffer nature, as shown by higher compressive moduli, which were measured by compression testing. Similarly, SEM, von Kossa staining and EDX analyses indicated higher amounts of calcium deposition on bioplotted scaffolds during cell culture. It was concluded that the design with larger interconnected porosity and stiffness has an effect on the osteogenic activity of the stem cells.
Resumo:
When combined at particular molar fractions, sugars, aminoacids or organic acids a present a high melting point depression, becoming liquids at room temperature. These are called Natural Deep Eutectic Solvents – NADES and are envisaged to play a major role on the chemical engineering processes of the future. Nonetheless, there is a significant lack of knowledge of its fundamental and basic properties, which is hindering their industrial applications. For this reason it is important to extend the knowledge on these systems, boosting their application development [1]. In this work, we have developed and characterized NADES based on choline chloride, organic acids, amino acids and sugars. Their density, thermal behavior, conductivity and polarity were assessed for different compositions. The conductivity was measured from 0 to 40 °C and the temperature effect was well described by the Vogel-Fulcher-Tammann equation. The morphological characterization of the crystallizable materials was done by polarized optical microscopy that provided also evidence of homogeneity/phase separation. Additionally, the rheological and thermodynamic properties of the NADES and the effect of water content were also studied. The results show these systems have Newtonian behavior and present significant viscosity decrease with temperature and water content, due to increase on the molecular mobility. The anhydrous systems present viscosities that range from higher than 1000Pa.s at 20°C to less than 1Pa.s at 70°C. DSC characterization confirms that for water content as high as 1:1:1 molar ratio, the mixture retains its single phase behavior. The results obtained demonstrate that the NADES properties can be finely tunned by careful selection of its constituents. NADES present the necessary properties for use as extraction solvents. They can be prepared from inexpensive raw materials and tailored for the selective extraction of target molecules. The data produced in this work is hereafter importance for the selection of the most promising candidates avoiding a time consuming and expensive trial and error phase providing also data for the development of models able to predict their properties and the mechanisms that allow the formation of the deep eutectic mixtures.
Resumo:
Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals) was randomly divided into two groups: one for exploratory factor analysis (EFA) and principal component analysis (PCA), to investigate the number of factors underlying the neurocognitive variables; the second to test the "best fit" model via confirmatory factor analysis (CFA). For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components) and two rotation (orthogonal and oblique) methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate.
Resumo:
[Description] Endometriosis, the presence of functional endometrial tissue outside the uterus, occurs in about 3–10% of women of reproductive age and is a cause of chronic pelvic pain and infertility for some.1 Bowel involvement may be present in about 5–10% of these women, mostly affecting the rectum and distal sigmoid (over 80% of cases), and, more infrequently, the appendix, ileum and caecum. The most common lesions involve only the serosa (endometriotic implants) but they can penetrate the muscular layers of the wall, in which case they are called deep infiltrating endometriosis. (...)
Resumo:
Dissertação de mestrado em Ecologia