36 resultados para Competency Development
Resumo:
Tese de Doutoramento Biologia Molecular e Ambiental - Especialidade em Biologia Celular e Saúde
Resumo:
Polymer based wicking structures were fabricated by sintering powders of polycarbonate (PC), ultra-high molecular weight polyethylene and polyamide 12, aiming at selecting a suitable material for an innovative electroencephalography (EEG) bio-electrode. Preliminary experiments showed that PC based wicks displayed the best mechanical properties, therefore more detailed studies were carried out with PC to evaluate the influence of powder granulometry and processing parameters (pressure, temperature and time) on the mechanical properties, porosity, mean pore radius and permeability of the wicks. It was concluded that the mechanical properties are significantly enhanced by increasing the processing time and pressure, although at the expense of a significant decrease of porosity and mean pore diameter (and thus permeability), particularly for the highest applied pressures (74kPa). However, a good compromise between porosity/permeability and mechanical properties could be obtained by sintering PC powders of particle sizes below 500μm at 165°C for 5min, upon an applied pressure of 56kPa. Moreover, PC proved to be chemically stable in contact with an EEG common used disinfectant. Thus, wicking structures with appropriate properties for the fabrication of reusable bio-electrodes could be fabricated from the sintering of PC powders.
Resumo:
The usual high cost of commercial codes, and some technical limitations, clearly limits the employment of numerical modelling tools in both industry and academia. Consequently, the number of companies that use numerical code is limited and there a lot of effort put on the development and maintenance of in-house academic based codes. Having in mind the potential of using numerical modelling tools as a design aid, of both products and processes, different research teams have been contributing to the development of open source codes/libraries. In this framework, any individual can take advantage of the available code capabilities and/or implement additional features based on his specific needs. These type of codes are usually developed by large communities, which provide improvements and new features in their specific fields of research, thus increasing significantly the code development process. Among others, OpenFOAM® multi-physics computational library, developed by a very large and dynamic community, nowadays comprises several features usually only available in their commercial counterparts; e.g. dynamic meshes, large diversity of complex physical models, parallelization, multiphase models, to name just a few. This computational library is developed in C++ and makes use of most of all language capabilities to facilitate the implementation of new functionalities. Concerning the field of computational rheology, OpenFOAM® solvers were recently developed to deal with the most relevant differential viscoelastic rheological models, and stabilization techniques are currently being verified. This work describes the implementation of a new solver in OpenFOAM® library, able to cope with integral viscoelastic models based on the deformation field method. The implemented solver is verified through the comparison of the predicted results with analytical solutions, results published in the literature and by using the Method of Manufactured Solutions.
Resumo:
[Excerpt] The advantages resulting from the use of numerical modelling tools to support the design of processing equipment are almost consensual. The design of calibration systems in profile extrusion is not an exception . H owever , the complex geome tries and heat exchange phenomena involved in this process require the use of numerical solvers able to model the heat exchange in more than one domain ( calibrator and polymer), the compatibilization of the heat transfer at the profile - calibrator interface and with the ability to deal with complex geometries. The combination of all these features is usually hard to find in commercial software. Moreover , the dimension of the meshes required to ob tain accurate results, result in computational times prohibitive for industrial application. (...)
Resumo:
The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto
Resumo:
Childhood is a central period for career and social-emotional development. However, the literature covering childhood career development and the role of emotions in careers is scarce. In this article, we advocate for the consideration of emotions in childhood career development. Emotional aspects of children’s career exploration, key-figures and interests, as well as of childhood antecedents of lifelong career processes are presented. Relations between childhood emotion, behavior, functioning and learning are also presented. Conclusions center on a call for focused study of the role of emotion in childhood career development and how such an agenda will advance the literature.
Resumo:
Institutional rearing adversely affects children’s development, but the extent to which specific characteristics of the institutional context and the quality of care provided contribute to problematic development remains unclear. In this study, 72 preschoolers institutionalised for at least 6 months were evaluated by their caregiver using the Child Behavior Checklist and the Disturbances of Attachment Interview. Distal and proximate indices of institutional caregiving quality were assessed using both staff reports and direct observation. Results revealed that greater caregiver sensitivity predicted reduced indiscriminate behaviour and secure-base distortions. A closer relationship with the caregiver predicted reduced inhibited attachment behaviour. Emotional and behavioural problems proved unrelated to caregiving quality. Results are discussed in terms of (non)-shared caregiving factors that influence institutionalised children’s development.
Resumo:
[Extrat] Currently there is a growing interest in the development of eco-efficient bio-based packaging, being active, smart and intelligent packaging the most highlighted among various innovations. Intelligent packaging has the ability to detect and mark, in real time, changes that might occur within the package/in the food product. Their main purpose is to help the consumer decide whether to buy a certain food product, ensuring that when it is bought it has not suffered significant changes influencing its quality and safety. (...)
Resumo:
Magnetoelectric microspheres based on piezoelectric poly(vinylidene fluoride) (PVDF) and magnetrostrictive CoFe2O4 (CFO), a novel morphology for polymer-based ME material, have been developed by an electrospray process. The CFO nanoparticles content in the (3-7 μm diameter) microspheres reaches values up to 27 wt.%, despite their concentration in the starting solution reaching values up to 70 wt.%. Additionally, the inclusion of magnetostrictive nanoparticles into the polymer spheres has no relevant effect on the piezoelectric β-phase content (≈60%), crystallinity (40%) and the onset degradation temperature (460º-465ºC) of the polymer matrix. The multiferroic microspeheres show a maximum piezoelectric reponse |d33|≈30 pC.N-1, leading to a magnetoelectric response of Δ|d33|≈5 pC.N-1 obtained when a 220 mT DC magnetic field was applied. It is also shown that the interface between CFO nanoparticles and PVDF (from 0 to 55%) has a strong influence on the ME response of the microspheres. The simplicity and the scalability of the processing method suggest a large application potential of this novel magnetoelectric geometry in areas such as tissue engineering, sensors and actuators.
Resumo:
[Excerpt] Bone tissue engineering is a very challenging and promising field, which handles with the limitations of bone regenerative capacity and the failure of current orthopedic implants [1]. This work describes the preparation and characterization of an injectable dextrin-based hydrogel (oDex) able to incorporate nanoparticles, cells, biomolecules or Bonelike~ granules [2]. (...)
Resumo:
Concrete is the primary construction material for civil infrastructures and generally consists of cement, coarse aggregates, sand, admixtures and water. Cementitious materials are characterized by quasi-brittle behaviour and susceptible to cracking [1]. The cracking process within concrete begins with isolated nano-cracks, which then conjoin to form micro-cracks and in turn macro-cracks. Formation and growth of cracks lead to loss of mechanical performance with time and also make concrete accessible to water and other degrading agents such as CO2, chlorides, sulfates, etc. leading to strength loss and corrosion of steel rebars. To improve brittleness of concrete, reinforcements such as polymeric as well as glass and carbon fibers have been used and microfibers improved the mechanical properties significantly by delaying (but could not stop) the transformation of micro-cracks into macro forms [2]. This fact encouraged the use of nano-sized fillers in concrete to prevent the growth of nano-cracks transforming in to micro and macro forms. Nanoparticles like SiO2, Fe2O3, and TiO2 led to considerable improvement in mechanical performance and moreover, nano-TiO2 helped to remove organic pollutants from concrete surfaces [3].
Resumo:
Poster
Resumo:
Introduction: Informal caregivers provide a significant part of the total care needed by dependent older people poststroke. Although informal care is often the preferred option of those who provide and those who receive informal care, informal caregivers often report lack of preparation to take care of older dependent people. This article outlines the development and psychometric testing of informal caregivers’ skills when providing care to older people after a stroke – ECPICID-AVC. Design: Prospective psychometric instrument validation study. Methods: Eleven experts participated in a focus group in order to delineate, develop and validate the instrument. Data were gathered among adult informal caregivers (n = 186) living in the community in Northern Portugal from August 2013 to January 2014. Results: The 32-item scale describes several aspects of informal caregiver’s skills. The scale has eight factors: skill to feed/hydrate by nasogastric feeding, skill to assist the person in personal hygiene, skill to assist the person for transferring, skill to assist the person for positioning, skill to provide technical aids, skill to assist the person to use the toilet, skill to feed/hydrate and skill to provide technical aids for dressing/undressing. Analysis demonstrated adequate internal consistency (Cronbach’s alpha = 0.83) and good temporal stability 0.988 (0.984–0.991). Conclusion: The psychometric properties of the measurement tool showed acceptable results allowing its implementation in clinical practice by the nursing community staff for evaluating practical skills in informal caregivers when providing care to older stroke survivors living at home.
Resumo:
Purpose – The purpose of this paper is to develop a subjective multidimensional measure of early career success during university-to-work transition. Design/methodology/approach – The construct of university-to-work success (UWS) was defined in terms of intrinsic and extrinsic career outcomes, and a three-stage study was conducted to create a new scale. Findings – A preliminary set of items was developed and tested by judges. Results showed the items had good content validity. Factor analyses indicated a four-factor structure and a second-order model with subscales to assess: career insertion and satisfaction, confidence in career future, income and financial independence, and adaptation to work. Third, the authors sought to confirm the hypothesized model examining the comparative fit of the scale and two alternative models. Results showed that fits for both the first- and second-order models were acceptable. Research limitations/implications – The proposed model has sound psychometric qualities, although the validated version of the scale was not able to incorporate all constructs envisaged by the initial theoretical model. Results indicated some direction for further refinement. Practical implications – The scale could be used as a tool for self-assessment or as an outcome measure to assess the efficacy of university-to-work programs in applied settings. Originality/value – This study provides a useful single measure to assess early career success during the university-to-work transition, and might facilitate testing of causal models which could help identify factors relevant for successful transition.
Resumo:
The study reported here aims at contributing to a deeper understanding of the educational possibilities offered by digital manipulatives in preschool contexts. It presents a study carried with a digital manipulative to enhance the development of lexical knowledge and language awareness, which are relevant language abilities for formal literacy learning. The study took place in a Portuguese preschool, with a class of 20 five-year-olds in collaboration with the teacher. The digital manipulative supported the construction of multiple fictional worlds, motivating children's verbal interactions, and the playing of words and sound games, thus contextualizing the learning of an extensive collection of vocabulary and language awareness abilities. The degree of engagement and involvement that the manipulative provided in supporting children’s imaginative play as well as the imitation, in their own play, of the playful pedagogical interventions that the teacher had designed, shows the importance of well- designed materials that support a child-centered learning model. As such, it sustains a discussion on the potential of digital manipulatives to enhance fundamental language development in the preschool years. Further, the study highlights the importance of multidisciplinary teams in the creation of innovative pedagogical materials.