31 resultados para Cationic modifications


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento Engenharia Têxtil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For years, silk fibroin of a domestic silkworm, Bombyx mori, has been recognized as a valuable material and extensively used. In the last decades, new application fields are emerging for this versatile material. Those final, specific applications of silk dictate the way it has been processed in industry and research. This review focuses on the description of various approaches for silk downstream processing in a laboratory scale, that fall within several categories. The detailed description of workflow possibilities from the naturally found material to a finally formulated product is presented. Considerable attention is given to (bio-) chemical approaches of silk fibroin transformation, particularly, to its enzyme-driven modifications. The focus of the current literature survey is exclusively on the methods applied in research and not industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A measurement of W boson production in lead-lead collisions at sNN−−−√=2.76 TeV is presented. It is based on the analysis of data collected with the ATLAS detector at the LHC in 2011 corresponding to an integrated luminosity of 0.14 nb−1 and 0.15 nb−1 in the muon and electron decay channels, respectively. The differential production cross-sections and lepton charge asymmetry are each measured as a function of the average number of participating nucleons ⟨Npart⟩ and absolute pseudorapidity of the charged lepton. The results are compared to predictions based on next-to-leading-order QCD calculations. These measurements are, in principle, sensitive to possible nuclear modifications to the parton distribution functions and also provide information on scaling of W boson production in multi-nucleon systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depression is an extremely heterogeneous disorder. Diverse molecular mechanisms have been suggested to underlie its etiology. To understand the molecular mechanisms responsible for this complex disorder, researchers have been using animal models extensively, namely mice from various genetic backgrounds and harboring distinct genetic modifications. The use of numerous mouse models has contributed to enrich our knowledge on depression. However, accumulating data also revealed that the intrinsic characteristics of each mouse strain might influence the experimental outcomes, which may justify some conflicting evidence reported in the literature. To further understand the impact of the genetic background, we performed a multimodal comparative study encompassing the most relevant parameters commonly addressed in depression, in three of the most widely used mouse strains: Balb/c, C57BL/6, and CD-1. Moreover, female mice were selected for this study taken into account the higher prevalence of depression in women and the fewer animal studies using this gender. Our results show that Balb/c mice have a more pronounced anxious-like behavior than CD-1 and C57BL/6 mice, whereas C57BL/6 animals present the strongest depressive-like trait. Furthermore, C57BL/6 mice display the highest rate of proliferating cells and brain-derived neurotrophic factor (Bdnf) expression levels in the hippocampus, while hippocampal dentate granular neurons of Balb/c mice show smaller dendritic lengths and fewer ramifications. Of notice, the expression levels of inducible nitric oxide synthase (iNos) predict 39.5% of the depressive-like behavior index, which suggests a key role of hippocampal iNOS in depression. Overall, this study reveals important interstrain differences in several behavioral dimensions and molecular and cellular parameters that should be considered when preparing and analyzing experiments addressing depression using mouse models. It further contributes to the literature by revealing the predictive value of hippocampal iNos expression levels in depressive-like behavior, irrespectively of the mouse strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of differential cross sections for J/ψ production in p+Pb collisions at sNN−−−−√=5.02 TeV at the CERN Large Hadron Collider with the ATLAS detector are presented. The data set used corresponds to an integrated luminosity of 28.1 nb−1. The J/ψ mesons are reconstructed in the dimuon decay channel over the transverse momentum range 8modifications of charmonium and b-quark production in p+Pb collisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinetic models have a great potential for metabolic engineering applications. They can be used for testing which genetic and regulatory modifications can increase the production of metabolites of interest, while simultaneously monitoring other key functions of the host organism. This work presents a methodology for increasing productivity in biotechnological processes exploiting dynamic models. It uses multi-objective dynamic optimization to identify the combination of targets (enzymatic modifications) and the degree of up- or down-regulation that must be performed in order to optimize a set of pre-defined performance metrics subject to process constraints. The capabilities of the approach are demonstrated on a realistic and computationally challenging application: a large-scale metabolic model of Chinese Hamster Ovary cells (CHO), which are used for antibody production in a fed-batch process. The proposed methodology manages to provide a sustained and robust growth in CHO cells, increasing productivity while simultaneously increasing biomass production, product titer, and keeping the concentrations of lactate and ammonia at low values. The approach presented here can be used for optimizing metabolic models by finding the best combination of targets and their optimal level of up/down-regulation. Furthermore, it can accommodate additional trade-offs and constraints with great flexibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental - Especialidade em Biologia Celular e Saúde

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genome-scale metabolic models are valuable tools in the metabolic engineering process, based on the ability of these models to integrate diverse sources of data to produce global predictions of organism behavior. At the most basic level, these models require only a genome sequence to construct, and once built, they may be used to predict essential genes, culture conditions, pathway utilization, and the modifications required to enhance a desired organism behavior. In this chapter, we address two key challenges associated with the reconstruction of metabolic models: (a) leveraging existing knowledge of microbiology, biochemistry, and available omics data to produce the best possible model; and (b) applying available tools and data to automate the reconstruction process. We consider these challenges as we progress through the model reconstruction process, beginning with genome assembly, and culminating in the integration of constraints to capture the impact of transcriptional regulation. We divide the reconstruction process into ten distinct steps: (1) genome assembly from sequenced reads; (2) automated structural and functional annotation; (3) phylogenetic tree-based curation of genome annotations; (4) assembly and standardization of biochemistry database; (5) genome-scale metabolic reconstruction; (6) generation of core metabolic model; (7) generation of biomass composition reaction; (8) completion of draft metabolic model; (9) curation of metabolic model; and (10) integration of regulatory constraints. Each of these ten steps is documented in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Molecular Genetics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unique properties of bacterial nanocellulose (BNC) provide the basis for a wide range of applications in human and veterinary medicine, odontology, pharmaceuticals, acoustic and filter membranes, biotechnological devices, and in the food and paper industry. In this chapter, an overview of surface modifications of bacterial cellulose is presented. Depending on the envisaged applications, chemical modifications, incorporation of bioactive molecules, modification of the porosity, crystallinity, and biodegradability may be obtained, further enlarging the potential of BNC.