99 resultados para Buildings--Performance
Resumo:
The bond behavior between Fiber Reinforced Polymers (FRPs) and masonry substrates has been the subject of many studies during the last years. Recent accelerated aging tests have shown that bond degradation and FRP delamination are likely to occur in FRP-strengthened masonry components under hygrothermal conditions. While an investigation on the possible methods to improve the durability of these systems is necessary, the applicability of different bond repair methods should also be studied. This paper aims at investigating the debonding mechanisms after repairing delaminated FRP-strengthened masonry components. FRP-strengthened brick specimens, after being delaminated, are repaired with two different adhesives: a conventional epoxy resin and a highly flexible polymer. The latter is used as an innovative adhesive in structural applications. The bond behavior in the repaired specimens is investigated by performing single-lap shear bond tests. Digital image correlation (DIC) is used for deeper investigation of the surface deformation and strains development. The effectiveness of the repair methods is discussed and compared with the strengthened specimens.
Resumo:
This paper reports on a structural safety assessment and performance evaluation of the upper choir of the Santa Maria de Belém Church in the Jerónimos monastery, Lisbon, one of the most important cultural heritage buildings in Portugal. The possibility of adding a new 20 t organ to the upper choir and its effects on the church structure's response are presented. A refined and a simplified finite-element model is developed to investigate the structure's performance under self-weight and seismic actions. A sensitivity analysis is performed to investigate the effect of masonry mechanical properties and rib cross-sections on the structural response, given the difficulty in accurately obtaining this information. The results show that the safety level of the structure is acceptable, even in the case of adding a heavy new organ.
Resumo:
A conventional method for seismic strengthening of masonry walls is externally application of reinforced concrete layer (shotcrete). However, due to the lack of analytical and experimental information on the behavior of strengthened walls, the design procedures are usually followed based on the empirical relations. Using these design procedures have resulted in massive strengthening details in retrofitting projects. This paper presents a computational framework for nonlinear analysis of strengthened masonry walls and its versatility has been verified by comparing the numerical and experimental results. Based on the developed numerical model and available experimental information, design relations and failure modes are proposed for strengthened walls in accordance with the ASCE 41 standard. Finally, a sample masonry structure has been strengthened using the proposed and available conventional methods. It has been shown that using the proposed method results in lower strengthening details and appropriate (ductile) failure modes
Resumo:
The use of Near Surface Mounted (NSM) Fiber Reinforced Polymers (FRPs) for strengthening masonry structures can be a suitable substitute for Externally Bonded Reinforcement (EBR) technique. NSM technique has many advantages such as larger bonded area, better anchorage capacity, higher resistance, higher percentage exploitation of the FRP and reduced installation time. However, information regarding the effectiveness of this strengthening technique for masonry structures is scarce and characterization of the critical mechanisms such as bond behavior is necessary. This paper presents experimental investigation of the bond performance in NSM-strengthened brick specimens. CFRP laminates are used for NSM strengthening of masonry bricks with different bonded lengths. The bond between FRP and masonry substrate is investigated by performing conventional pull-out tests and the experimental results are presented and discussed.
Resumo:
This paper presents the findings of an experimental campaign that was conducted to investigate the seismic behaviour of log houses. A two-storey log house designed by the Portuguese company Rusticasa® was subjected to a series of shaking table tests at LNEC, Lisbon, Portugal. The paper contains the description of the geometry and construction of the house and all the aspects related to the testing procedure, namely the pre-design, the setup, instrumentation and the testing process itself. The shaking table tests were carried out with a scaled spectrum of the Montenegro (1979) earthquake, at increasing levels of PGA, starting from 0.07g, moving on to 0.28g and finally 0.5g. The log house did not suffer any major damage and remained in working condition throughout the entire process. The preliminary analysis of the overall behaviour of the log house is also discussed.
Resumo:
The dearth of knowledge on the load resistance mechanisms of log houses and the need for developing numerical models that are capable of simulating the actual behaviour of these structures has pushed efforts to research the relatively unexplored aspects of log house construction. The aim of the research that is presented in this paper is to build a working model of a log house that will contribute toward understanding the behaviour of these structures under seismic loading. The paper presents the results of a series of shaking table tests conducted on a log house and goes on to develop a numerical model of the tested house. The finite element model has been created in SAP2000 and validated against the experimental results. The modelling assumptions and the difficulties involved in the process have been described and, finally, a discussion on the effects of the variation of different physical and material parameters on the results yielded by the model has been drawn up.
Resumo:
A single supply chain management (SCM) practice will have a certain impact on organizational performance(OP). However, since it is placed in a system that many other practices are conducted simultaneously, the practice itself will interact with other ones and have a greater impact on OP. This mechanism is named the "resonant" influence. The technique of Structural equation modelling (SEM) was used to test the above mechanism with data collected from Vietnamese garment enterprises. The tcst results showed that the model without mutual interaction among SCM practices could explain 42.8%, 26.3% and 34% variance of operational performance, customer satisfaction and financial performance. While the one containing this interaction is capable to explain 69.5%, 33.1% and 57.3%, respectively.
Resumo:
Solar passive strategies that have been developed in vernacular architecture from different regions are a response to specific climate effects. These strategies are usually simple, low-tech and have low potential environmental impact. For this reason, several studies highlight them as having potential to reduce the demands of non-renewable energy for buildings operation. In this paper, the climatic contrast between northern and southern parts of mainland Portugal is presented, namely the regions of Beira Alta and Alentejo. Additionally, it discusses the contribution of different climate-responsive strategies developed in vernacular architecture from both regions to assure thermal comfort conditions. In Beira Alta, the use of glazed balconies as a strategy to capture solar gains is usual, while in Alentejo the focus is on passive cooling strategies. To understand the effectiveness of these strategies, thermal performances and comfort conditions of two case studies were evaluated based on the adaptive comfort model. Field tests included measurement of hygrothermal parameters and surveys on occupants’ thermal sensation. From the results, it has been found that the case studies have shown a good thermal performance by passive means alone and that the occupants feel comfortable, except during winter where there is the need to use simple heating systems.
Resumo:
This study investigates the role of the polymeric binder on the properties and performance of an intumescent coating. Waterborne resins of different types (vinylic, acrylic, and styrene-acrylic) were incorporated in an intumescent paint formulation, and characterized extensively in terms of thermal degradation behavior, intumescence thickness, and thermal insulation. Thermal microscopy images of charred foam development provided further information on the particular performance of each type of coating upon heating. The best foam expansion and heat protection results were obtained with the vinyl binders. Rheological measurements showed a complex evolution of the viscoelastic characteristics of the materials with temperature. As an example, the vinyl binders unexpectedly hardened significantly after thermal degradation. The values of storage moduli obtained at the onset of foam blowing (melamine decomposition) were used to explain different intumescence expansion behaviors.
Resumo:
Given the need for using more sustainable constructive solutions, an innovative composite material based on a combination of distinct industrial by-products is proposed aiming to reduce waste and energy consumption in the production of construction materials. The raw materials are thermal activated flue-gas desulphurization (FGD) gypsum, which acts as a binder, granulated cork as the aggregate and recycled textile fibres from used tyres intended to reinforce the material. This paper presents the results of the design of the composite mortar mixes, the characterization of the key physical properties (density, porosity and ultrasonic pulse velocity) and the mechanical validation based on uniaxial compressive tests and fracture energy tests. In the experimental campaign, the influence of the percentage of the raw materials in terms of gypsum mass, on the mechanical properties of the composite material was assessed. It was observed that the percentage of granulated cork decreases the compressive strength of the composite material but contributes to the increase in the compressive fracture energy. Besides, the recycled textile fibres play an important role in the mode I fracture process and in the fracture energy of the composite material, resulting in a considerable increase in the mode I fracture energy.
Resumo:
A substantial part of the world building heritage has been performed by earthen building. The durability of this existing heritage and mainly of the new buildings built with earth is particularly conditioned by the erosion caused by water action, especially in countries with high levels of rainfall. This research aims to contribute to the increase of knowledge about the ancient building techniques that provide enhanced durability. It is possible to analyse the ancestral practices used to protect the earth material from the water action in order to understand how the old earthen buildings were preserved over the centuries, resisting to harsh weather conditions. Among these techniques are: the incorporation of biopolymers (such as oils or fats from animal or vegetable origin); the addition of some minerals; and the earth stabilization with lime. However, this knowledge seems to be forgotten, probably due to the prejudice related to earthen constructions, which several times are associated with a poor building. This research also focuses on the study of new methods of earth stabilization with lime and biopolymers, adapting the ancient knowledge to improve the durability related to the water action. Therefore, alternative solutions can be obtained to improve the performance of earthen buildings, mainly the resistance of the material in the presence of water, reducing its permeability to water. In addition, with the proposed solutions it is possible to obtain good levels of water vapour permeability, one of the major advantages of the construction with earth.
Resumo:
This study aims to develop an innovative bitumen with large quantities of waste materials to improve asphalt mixtures performance. Different amounts of waste motor oil and waste HDPE were added to a new bitumen. The bitumen modified with 10% of waste motor oil and 5% of HDPE showed promising characteristics (high softening point temperatures and penetration slightly higher than the conventional bitumen). After the selection of the most promising modified bitumen, three asphalt mixtures were produced with different bitumens (namely conventional bitumen, commercial modified bitumen and the selected modified bitumen). Beyond that, this modified bitumen improved some mechanical characteristics of the asphalt mixture where it was used, in comparison to conventional and modified asphalt mixtures.
Resumo:
Universities are increasingly institutionalizing activities related to technology transfer and one of the main institutional mechanisms that has emerged is the “technology transfer unit” (TTU). Many of them are focusing their activities on the management of the university intellectual property. Studies have investigated factors that seem to affect their performance, but few have looked in detail at internal procedures and techniques that are used in their processes related to technology evaluation and licensing. The aim of this paper is to provide a comprehensive overview of some of the several steps that comprises the processes regarding technology evaluation and licensing, providing an analysis of the critical issues that affect each step of the process. A review of the literature was made, complemented with interviews to seven university TTUs, which was used as a check and a complement to the literature review and as way of perceiving from an insider perspective, the problems and issues that this paper wants to emphasize and to state clearly.
Resumo:
Rammed earth is one of the oldest building materials in the world and is present in the Portugal with a particular focus in the South of the country. The mechanical properties and the structural behaviour of rammed earth constructions have been the subject of study of many researchers in the recent years. This study is part of a broader research on vernacular seismic culture in Portugal. Numerical analyses were carried out on a rammed earth masonry construction representative of the vernacular heritage of Alentejo region. Variations in the geometry, constructive characteristics and material properties were implemented and the main conclusions of the non-linear static and modal analysis are presented. Analysing the damage framework allowed interpreting the weaknesses of this type of constructions and consider the most appropriate reinforcement methodologies.
Resumo:
This paper presents the numerical seismic analysis of isolated vernacular buildings characteristic of the Alentejo region, which is considered a medium seismic hazard region in Portugal.A representative isolated building was selected from a database, and a geometric model was defined for the numerical pushover analysis. Subsequently, a parametric analysis was carried out to assess the influence of distinct parameters on the seismic behaviour of such buildings.