18 resultados para Angular-momentum Transfer
Resumo:
Results of a search for new phenomena in events with large missing transverse momentum and a Higgs boson decaying to two photons are reported. Data from proton--proton collisions at a center-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb−1 have been collected with the ATLAS detector at the LHC. The observed data are well described by the expected Standard Model backgrounds. Upper limits on the cross section of events with large missing transverse momentum and a Higgs boson candidate are also placed. Exclusion limits are presented for models of physics beyond the Standard Model featuring dark-matter candidates.
Resumo:
Production of citric acid from crude glycerol from biodiesel industry, in batch cultures of Yarrowia lipolytica W29 was performed in a lab-scale stirred tank bioreactor in order to assess the effect of oxygen mass transfer rate in this bioprocess. An empirical correlation was proposed to describe oxygen volumetric mass transfer coefficient (kLa) as a function of operating conditions (stirring speed and specific air flow rate) and cellular density. kLa increased according with a power function with specific power input and superficial gas velocity, and slightly decreased with cellular density. The increase of initial kLa from 7 h-1 to 55 h-1 led to 7.8-fold increase of citric acid final concentration. Experiments were also performed at controlled dissolved oxygen (DO) and citric acid concentration increased with DO up to 60% of saturation. Thus, due to the simpler operation setting an optimal kLa than at controlled DO, it can be concluded that kLa is an adequate parameter for the optimization of citric acid production from crude glycerol by Y. lipolytica and to be considered in bioprocess scale-up. Our empirical correlation, considering the operating conditions and cellular density, will be a valid tool for this purpose.
Resumo:
In this chapter, a complete characterization of the angular velocity and angular acceleration for rigid bodies in spatial multibody systems are presented. For both cases, local and global formulations are described taking into account the advantages of using Euler parameters. In this process, the transformation between global and local components of the angular velocity and time derivative of the Euler parameters are analyzed and discussed in this chapter.