25 resultados para ADAPTIVE SUPPORT VENTILATION
Resumo:
Tese de Doutoramento em Tecnologias e Sistemas de Informação
Resumo:
Objectives: This study analyzed the moderating role of partners’ support and satisfaction with healthcare services in the relationship between psychological morbidity and adherence to diet in patients with type 2 diabetes (T2DM). Methods: Participants were 387 recently diagnosed T2DM patients that answered the following instruments: Revised Summary of Diabetes Self- Care Activities Measure, Hospital Anxiety and Depression Scales, Multidimensional Diabetes Questionnaire and Patient Satisfaction Questionnaire. Results: Partners’ positive and negative support moderated the relationship between psychological morbidity and adherence to diet. Satisfaction with healthcare services also moderated the relationship between psychological morbidity and adherence to diet. Conclusions: Intervention programs to promote adherence to diet in patients with type 2 diabetes should focus on partners’ support and patient satisfaction with healthcare services.
Resumo:
[Excerpt] We read with interest the case report by Ismael et al1 describing a patient with Sjo¨gren’s syndrome and cystic lung disease who could not be weaned from a ventilator due to severe central excessive dynamic airway collapse (EDAC) of the lower part of the trachea and proximal bronchi. EDAC corresponds to the expiratory bulging of the tracheobronchial wall without known airway structural abnormalities, leading to a decrease of at least 50% in internal diameter.2 It is a rare and underdiagnosed entity, commonly confused with other respiratory diseases such as asthma and COPD. Although noninvasive procedures such as cervicothoracic computed tomography scan on inspiration and expiration may suggest the disorder, the accepted standard method for diagnosis is bronchoscopy.3-7 (...).
Resumo:
Many funding agencies have Open Access mandates in place, but how often are scientific publications as outputs linked to funding details? The benefits of linking funding information to publications as part of the deposit workflow can assist in adhering to Open Access mandates. This paper examines how OpenAIRE – Open Access Infrastructure for Research in Europe – can ease monitoring Open Access and reporting processes for funders, and presents some results and opportunities. It also outlines how it relies on cleaned and curated repository content, a vital cog in the ever turning wheel of the global scholarly landscape, and the benefits it brings.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
The paper reflects the work of COST Action TU1403 Workgroup 3/Task group 1. The aim is to identify research needs from a review of the state of the art of three aspects related to adaptive façade systems: (1) dynamic performance requirements; (2) façade design under stochastic boundary conditions and (3) experiences with adaptive façade systems and market needs.
Resumo:
Invasive cervical cancer (ICC) is the third most frequent cancer among women worldwide and is associated with persistent infection by carcinogenic human papillomaviruses (HPVs). The combination of large populations of viral progeny and decades of sustained infection may allow for the generation of intra-patient diversity, in spite of the assumedly low mutation rates of PVs. While the natural history of chronic HPVs infections has been comprehensively described, within-host viral diversity remains largely unexplored. In this study we have applied next generation sequencing to the analysis of intra-host genetic diversity in ten ICC and one condyloma cases associated to single HPV16 infection. We retrieved from all cases near full-length genomic sequences. All samples analyzed contained polymorphic sites, ranging from 3 to 125 polymorphic positions per genome, and the median probability of a viral genome picked at random to be identical to the consensus sequence in the lesion was only 40%. We have also identified two independent putative duplication events in two samples, spanning the L2 and the L1 gene, respectively. Finally, we have identified with good support a chimera of human and viral DNA. We propose that viral diversity generated during HPVs chronic infection may be fueled by innate and adaptive immune pressures. Further research will be needed to understand the dynamics of viral DNA variability, differentially in benign and malignant lesions, as well as in tissues with differential intensity of immune surveillance. Finally, the impact of intralesion viral diversity on the long-term oncogenic potential may deserve closer attention.
Resumo:
Mechanical Ventilation is an artificial way to help a Patient to breathe. This procedure is used to support patients with respiratory diseases however in many cases it can provoke lung damages, Acute Respiratory Diseases or organ failure. With the goal to early detect possible patient breath problems a set of limit values was defined to some variables monitored by the ventilator (Average Ventilation Pressure, Compliance Dynamic, Flow, Peak, Plateau and Support Pressure, Positive end-expiratory pressure, Respiratory Rate) in order to create critical events. A critical event is verified when a patient has a value higher or lower than the normal range defined for a certain period of time. The values were defined after elaborate a literature review and meeting with physicians specialized in the area. This work uses data streaming and intelligent agents to process the values collected in real-time and classify them as critical or not. Real data provided by an Intensive Care Unit were used to design and test the solution. In this study it was possible to understand the importance of introduce critical events for Mechanically Ventilated Patients. In some cases a value is considered critical (can trigger an alarm) however it is a single event (instantaneous) and it has not a clinical significance for the patient. The introduction of critical events which crosses a range of values and a pre-defined duration contributes to improve the decision-making process by decreasing the number of false positives and having a better comprehension of the patient condition.
Resumo:
Football is considered nowadays one of the most popular sports. In the betting world, it has acquired an outstanding position, which moves millions of euros during the period of a single football match. The lack of profitability of football betting users has been stressed as a problem. This lack gave origin to this research proposal, which it is going to analyse the possibility of existing a way to support the users to increase their profits on their bets. Data mining models were induced with the purpose of supporting the gamblers to increase their profits in the medium/long term. Being conscience that the models can fail, the results achieved by four of the seven targets in the models are encouraging and suggest that the system can help to increase the profits. All defined targets have two possible classes to predict, for example, if there are more or less than 7.5 corners in a single game. The data mining models of the targets, more or less than 7.5 corners, 8.5 corners, 1.5 goals and 3.5 goals achieved the pre-defined thresholds. The models were implemented in a prototype, which it is a pervasive decision support system. This system was developed with the purpose to be an interface for any user, both for an expert user as to a user who has no knowledge in football games.
Resumo:
Patient blood pressure is an important vital signal to the physicians take a decision and to better understand the patient condition. In Intensive Care Units is possible monitoring the blood pressure due the fact of the patient being in continuous monitoring through bedside monitors and the use of sensors. The intensivist only have access to vital signs values when they look to the monitor or consult the values hourly collected. Most important is the sequence of the values collected, i.e., a set of highest or lowest values can signify a critical event and bring future complications to a patient as is Hypotension or Hypertension. This complications can leverage a set of dangerous diseases and side-effects. The main goal of this work is to predict the probability of a patient has a blood pressure critical event in the next hours by combining a set of patient data collected in real-time and using Data Mining classification techniques. As output the models indicate the probability (%) of a patient has a Blood Pressure Critical Event in the next hour. The achieved results showed to be very promising, presenting sensitivity around of 95%.