25 resultados para 3D motion capture
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
Co-cultures of two or more cell types and biodegradable biomaterials of natural origin have been successfully combined to recreate tissue microenvironments. Segregated co-cultures are preferred over conventional mixed ones in order to better control the degree of homotypic and heterotypic interactions. Hydrogel-based systems in particular, have gained much attention to mimic tissue-specific microenvironments and they can be microengineered by innovative bottom-up approaches such as microfluidics. In this study, we developed bi-compartmentalized (Janus) hydrogel microcapsules of methacrylated hyaluronic acid (MeHA)/methacrylated-chitosan (MeCht) blended with marine-origin collagen by droplet-based microfluidics co-flow. Human adipose stem cells (hASCs) and microvascular endothelial cells (hMVECs) were co-encapsulated to create platforms of study relevant for vascularized bone tissue engineering. A specially designed Janus-droplet generator chip was used to fabricate the microcapsules (<250â μm units) and Janus-gradient co-cultures of hASCs: hMVECs were generated in various ratios (90:10; 75:25; 50:50; 25:75; 10:90), through an automated microfluidic flow controller (Elveflow microfluidics system). Such monodisperse 3D co-culture systems were optimized regarding cell number and culture media specific for concomitant maintenance of both phenotypes to establish effective cell-cell (homotypic and heterotypic) and cell-materials interactions. Cellular parameters such as viability, matrix deposition, mineralization and hMVECs re-organization in tube-like structures, were enhanced by blending MeHA/MeCht with marine-origin collagen and increasing hASCs: hMVECs co-culture gradient had significant impact on it. Such Janus hybrid hydrogel microcapsules can be used as a platform to investigate biomaterials interactions with distinct combined cell populations.
Resumo:
"Tissue engineering: part A", vol. 21, suppl. 1 (2015)
Resumo:
The suitability of a total-length-based, minimum capture-size and different protection regimes was investigated for the gooseneck barnacle Pollicipes pollicipes shellfishery in N Spain. For this analysis, individuals that were collected from 10 sites under different fishery protection regimes (permanently open, seasonally closed, and permanently closed) were used. First, we applied a non-parametric regression model to explore the relationship between the capitulum Rostro-Tergum (RT) size and the Total Length (TL). Important heteroskedastic disturbances were detected for this relationship, demon- strating a high variability of TL with respect to RT. This result substantiates the unsuitability of a TL-based minimum size by means of a mathematical model. Due to these disturbances, an alternative growth- based minimum capture size of 26.3 mm RT (23 mm RC) was estimated using the first derivative of a Kernel-based non-parametric regression model for the relationship between RT and dry weight. For this purpose, data from the permanently protected area were used to avoid bias due to the fishery. Second, the size-frequency distribution similarity was computed using a MDS analysis for the studied sites to evaluate the effectiveness of the protection regimes. The results of this analysis indicated a positive effect of the permanent protection, while the effect of the seasonal closure was not detected. This result needs to be interpreted with caution because the current harvesting based on a potentially unsuitable mini- mum capture size may dampen the efficacy of the seasonal protection regime.
Resumo:
Relatório de estágio de mestrado em Média Interativos
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Informática Médica)
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"