265 resultados para Grant Ulysses S. (Ulysses Simpson), 1822-1885.
Resumo:
Personalized tissue engineering and regenerative medicine (TERM) therapies propose patient-oriented effective solutions, considering individual needs. Cell-based therapies, for example, may benefit from cell sources that enable easier autologous set-ups or from recent developments on IPS cells technologies towards effective personalized therapeutics. Furthermore, the customization of scaffold materials to perfectly fit a patientâ s tissue defect through rapid prototyping technologies, also known as 3D printing, is now a reality. Nevertheless, the timing to expand cells or to obtain functional in vitrotissue substitutes prior to implantation prevents advancements towards routine use upon patient´s needs. Thus, personalized therapies also anticipate the importance of creating off-the-shelf solutions to enable immediately available tissue engineered products. This paper reviews the main recent developments and future challenges to enable personalized TERM approaches and to bring these technologies closer to clinical applications.
Resumo:
Zearalenone (ZEN) is a mycotoxin that has relatively low acute toxicity. However, it is a potent oestrogen, interfering with the reproductive tract of animals. Among other effects, ZEN decreases animals fertility, and induces fibrosis in the uterus, breast cancer and endometrial carcinoma (Zinedine et al., 2007). Anti-mycotoxin additives (AMA) are defined as a group of products that, when added to animal feed, are capable of adsorbing, inactivating, or neutralizing mycotoxins in the gastrointestinal tract of animals. One example of these products are adsorbents based on yeast cell walls, a safe and beneficial animal feed additive (Abreu et al., 2008). When based on active cells, yeast based products also act as a probiotic, contributing to improve the general animal health because it stimulates their immune system and promotes the integrity of intestinal mucosa (Albino et al., 2006). Strains of Saccharomyces cerevisiae isolated from silage were tested for their ZEN removal capability. Their effect on - and b-zearalenol (-ZOL and b-ZOL) was also tested. Strains were grown on YPD separately supplemented with ZEN, -ZOL and b-ZOL, and their elimination from culture media was quantified over time by HPLC-FL.
Superhydrophobic surfaces as a tool for the fabrication of hierarchical spherical polymeric carriers
Resumo:
Hierarchical polymeric carriers with high encapsulation efficiencies are fabricated via a biocompatible strategy developed using superhydrophobic (SH) surfaces. The carries are obtained by the incorporation of cell/BSA-loaded dextran-methacrylate (DEXT-MA) microparticles into alginate (ALG) macroscopic beads. Engineered devices like these are expected to boost the development of innovative and customizable systems for biomedical and biotechnological purposes.
Resumo:
Ideal candidates for the repair of robust biological tissues should exhibit diverse features such as biocompatibility, strength, toughness, self-healing ability and a well-defined structure. Among the available biomaterials, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, are promising for Tissue Engineering purposes as result of their high resemblance with native extracellular matrix. However, these polymeric structures often exhibit a poor mechanical behavior, hampering their use in load-bearing applications. During the last years, several efforts have been made to create new strategies and concepts to fabricate strong and tough hydrogels. Although it is already possible to shape the mechanical properties of artificial hydrogels to mimic biotissues, critical issues regarding, for instance, their biocompatibility and hierarchical structure are often neglected. Therefore, this review covers the structural and mechanical characteristics of the developed methodologies to toughen hydrogels, highlighting some pioneering efforts employed to combine the aforementioned properties in natural-based hydrogels.
Resumo:
The focus of this paper is given to investigate the effect of different fibers on the pore pressure of fiber reinforced self-consolidating concrete under fire. The investigation on the pore pressure-time and temperature relationships at different depths of fiber reinforced self-consolidating concrete beams was carried out. The results indicated that micro PP fiber is more effective in mitigating the pore pressure than macro PP fiber and steel fiber. The composed use of steel fiber, micro PP fiber and macro PP fiber showed clear positive hybrid effect on the pore pressure reduction near the beam bottom subjected to fire. Compared to the effect of macro PP fiber with high dosages, the effect of micro PP fiber with low fiber contents on the pore pressure reduction is much stronger. The significant factor for reduction of pore pressure depends mainly on the number of PP fibers and not only on the fiber content. An empirical formula was proposed to predict the relative maximum pore pressure of fiber reinforced self-consolidating concrete exposed to fire by considering the moisture content, compressive strength and various fibers. The suggested model corresponds well with the experimental results of other research and tends to prove that the micro PP fiber can be the vital component for reduction in pore pressure, temperature as well spalling of concrete.
Resumo:
Strategic funding of UID/BIO/04469/2013 unit and project ref RECI/BBB-EBI/0179/2012 (project number FCOMP-01-0124-FEDER-027462) and Xanel Vecino post-doctoral grant (ref SFRH/BPD/101476/2014) funded by Fundação para a Ciência e a Tecnologia, Portugal
Resumo:
(Excerto) Nowadays, the public discourses about gender equality are commonly accepted in Western society. In fact, we live in an era of “equality illusion” (Banyard, 2010) because the mainstream discourses incorporate gender in the agenda, conveying the message that feminist struggles are unnecessary today. At the same time, postfeminism (McRobbie, 2004) gains importance and demonstrates the intricacies of a neoliberal, highly individualist culture that subtly imprisons the freedoms that it is supposed to grant (Gill & Scharff, 2011).
Resumo:
Nowadays, the public discourses about gender equality are commonly accepted in Western society. In fact, we live in an era of “equality illusion” (Banyard, 2010) because the mainstream discourses incorporate gender in the agenda, conveying the message that feminist struggles are unnecessary today. At the same time, postfeminism (McRobbie, 2004) gains importance and demonstrates the intricacies of a neoliberal, highly individualist culture that subtly imprisons the freedoms that it is supposed to grant (Gill & Scharff, 2011). However, back in 1978, Gaye Tuchman used the expression “symbolic annihilation” to refer to how the media represented women. The author refers to a “symbolic annihilation” because sometimes it is so hidden and subtle that it becomes difficult to perceive – and to be fought. Much has improved since then; yet a lot remains the same. Over the past decades there have been marked changes in gender relations, in feminist activism, in the (media) communication industry and in society in general (Byerly, 2013; Carter, Steiner & McLaughlin, 2015; Gallagher, 2014; Gallego, 2013; Krijnen, Álvares & Van Bauwel, 2011; Krijnen & Van Bauwel, 2015; Lobo, Silveirinha, Subtil, & Torres, 2015; Ross, 2009; Silveirinha, 2001; Van Zoonen, 1994, 2010). Now, in a globalised and media saturated world, the gendered picture is, consequently, different. The contemporary grammar is marked by diverse and complex tensions (van Zoonen, 2010).
Resumo:
Mycotoxins are secondary metabolites produced by filamentous fungi that are toxic for humans and animals in small amounts and that are found worldwide in a large number of agricultural commodities. They are usually ingested involuntarily, when contaminated plant products are consumed, and represent a great risk for public health. Therefore, governments throughout the world have imposed strict legal limits for their levels in food and feed products in order to reduce potential health risks for consumers. Despite of its ubiquity, the mycotoxin problem is mainly dependent on regional factors, such as the mycotoxigenic characteristics of the local mycoflora, the local climate conditions, and the local agricultural practices. For this reason, a constant vigilance from local governmental food safety agencies and from the local researcher community is needed. This communication will review the current situation on the occurrence of mycotoxigenic fungi in some Portuguese cultures, such as wine grapes, corn and dried fruits. Particular attention will be given to the incidence of mycotoxigenic Aspergillus strains in those cultures and to the levels of ochratoxin A, aflatoxins, cyclopiazonic acid and fumonisin B2 produced. Data will be discussed taking into account the geographical origin of the isolates and the particular climate conditions of each sampling region. An updated review on the levels of the main mycotoxins found in local products and in imported commodities will also be presented.
Simultaneous detection of cyclopiazonic acid and aflatoxin B1 by HPLC in methanol/water mobile phase
Resumo:
A simple procedure for the simultaneous detection of cyclopiazonic acid (CPA) and aflatoxin B1 from fungal extracts is presented, using a methanol and water mobile phase and fluorescence detection. This methodology has been tested with standard solutions of both mycotoxins CPA and Aflatoxin B1 and with methanolic extracts of Aspergillus section Flavi strains, previously characterized for their mycotoxin production profile. Previously available methodology required the use of two different chromatographic runs for these mycotoxins, with distinct columns and detectors (fluorescence detection with a post-column photochemical derivatization (PHRED) for aflatoxin B1 and UV detection for CPA). The proposed method detects both mycotoxins in a single run. Data from these assays will be presented and discussed.
Resumo:
In Portugal, maize is the cereal that involves more agriculture explorations. Aspergillus spp., among other species, are usually associated with this cereal, during drying and storage, making this commodity susceptible to mycotoxins (such as aflatoxins, ochratoxins, and cyclopiazonic acid). The aim of this study was to evaluate the mycotoxigenic potential of isolated Aspergillus strains from these maize samples and correlate it with the sampling place, the weather conditions, and local practices during drying and storage. The samples were collected between November 2008 and April 2009 in maize association of producers facilities in Coimbra, Santarém and Portalegre. The isolated strains were divided in three distinct groups, Aspergillus section Flavi, Aspergillus section Nigri and others Aspergillus. The preliminary results show that there are differences between the incidence of these groups in the three sampling places, especially in Coimbra, probably due to a lower mean temperatures and higher humidity levels. These data will be presented and discussed.
Resumo:
Mycotoxins are fungal secondary metabolites found in some agricultural commodities which are toxic for humans and animals in small amounts. Mycotoxins are a global problem which can be partially controlled through prevention strategies that can be applied along the food and feed chain production. However, when mycotoxin formation can not be avoided and they come to be present in commodities some remediation strategies can also be used to reduce its levels on products, its bioavailability or its toxic effects. Among these remediation strategies, the biological methods are recently holding a relevant position, being widely studied in the last years. As a result, a great number of microorganisms that can degrade or detoxify several mycotoxins and the application of some of them were reported. Moreover, several enzymes which mediate these biological processes were identified, being by themselves studied in order to develop new biotechnological approaches to control the mycotoxin problem on commodities. The main enzymes known to detoxify ochratoxin A, their action and their present application in order to counteract the referred problem are reviewed and critically assessed.
Resumo:
Mycotoxins are toxic secondary metabolites produced by certain moulds, being ochratoxin A (OTA) one of the most relevant. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption [1]. According to the Regulation No. 1881/2006 of the European Commission, the maximum limit for OTA in wine is 2 µg/kg [2]. Therefore, the aim of this work was to know the effect of different fining agents on OTA removal, as well as their impact on white and red wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white and red wines. Trials were performed in wines artificially supplemented (at a final concentration of 10 µg/L) with OTA. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatine, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. In red wine, removals between 6-19% were obtained with egg albumin, yeast cell walls, pea protein, isinglass, gelatine, polyvinylpolypyrrolidone and chitosan. The most effective fining agents in removing OTA from red wine were an activated carbon (66%) followed again by the commercial formulation (55%), being activated carbon a well-known adsorbent of mycotoxins. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.
Resumo:
The presence of mycotoxins in foodstuff is a matter of concern for food safety. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A (OTA) [1]. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. The maximum acceptable level of OTA in wines is 2.0 µg/kg according to the Commission regulation No. 1881/2006 [2]. Although, higher levels of OTA have been detected in several wine samples. In order to reduce OTA to safer levels, several oenological products can be used in wine; including activated carbons, as shown in previous experiments. Regarding this, the aim of present study was to evaluate the effectiveness of several activated carbons for reducing the amount of OTA present in white and red wines as well as to evaluate their effect on wines physicochemical characteristics. Wine samples were artificially supplemented with OTA at a final concentration of 10.0 µg/L. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. A mixture composed by gelatine, bentonite and activated carbon reduced 80% of OTA concentration in white wine. The same mixture was however less efficient in red wine, achieving only a reduction of 55%. Thereafter, the effect of activated carbon was evaluated in a red wine, achieving reductions of 66%. Considering these results more assays are being performed with other commercial activated carbons, in order to evaluate their efficiency. These results may provide valuable information for winemakers. Knowing the effect of commercial activated carbons they may choose most appropriate products to remove OTA, thus enhancing wine safety and quality.
Resumo:
Mycotoxins are toxic secondary metabolites produced by certain molds. Ochratoxin A (OTA) is one of the most relevant. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L--phenylalanine via an amide bond. OTA in wine is a risk to consumer health [1]. According to the Regulation No. 123/2005 of the European Commission, the maximum limit for OTA in wine is 2 µg/kg [2]. Then, it is important to control its occurrence. So, the aim of this work was to know the effect of different fining agents on OTA removal from white wine.