24 resultados para Split-brain patient


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an improved model to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving Orienteering Problems is presented, and this heuristic provides good results in terms of accuracy and computation time. Euclidean instances as well as asymmetric real data gathered from Google maps were used, and the model has a promising performance mainly with asymmetric cost matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Intensive Medicine, the presentation of medical information is done in many ways, depending on the type of data collected and stored. The way in which the information is presented can make it difficult for intensivists to quickly understand the patient's condition. When there is the need to cross between several types of clinical data sources the situation is even worse. This research seeks to explore a new way of presenting information about patients, based on the timeframe in which events occur. By developing an interactive Patient Timeline, intensivists will have access to a new environment in real-time where they can consult the patient clinical history and the data collected until the moment. The medical history will be available from the moment in which patients is admitted in the ICU until discharge, allowing intensivist to examine data regarding vital signs, medication, exams, among others. This timeline also intends to, through the use of information and models produced by the INTCare system, combine several clinical data in order to help diagnose the future patients’ conditions. This platform will help intensivists to make more accurate decision. This paper presents the first approach of the solution designed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Psicologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipocalin-2 (LCN2) is an acute-phase protein that, by binding to iron-loaded siderophores, acts as a potent bacteriostatic agent in the iron-depletion strategy of the immune system to control pathogens. The recent identification of a mammalian siderophore also suggests a physiological role for LCN2 in iron homeostasis, specifically in iron delivery to cells via a transferrin-independent mechanism. LCN2 participates, as well, in a variety of cellular processes, including cell proliferation, cell differentiation and apoptosis, and has been mostly found up-regulated in various tissues and under inflammatory states, being its expression regulated by several inducers. In the central nervous system less is known about the processes involving LCN2, namely by which cells it is produced/secreted, and its impact on cell proliferation and death, or in neuronal plasticity and behaviour. Importantly, LCN2 recently emerged as a potential clinical biomarker in multiple sclerosis and in ageing-related cognitive decline. Still, there are conflicting views on the role of LCN2 in pathophysiological processes, with some studies pointing to its neurodeleterious effects, while others indicate neuroprotection. Herein, these various perspectives are reviewed and a comprehensive and cohesive view of the general function of LCN2, particularly in the brain, is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The therapeutic effects of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation in patients with major depression have shown promising results; however, there is a lack of mechanistic studies using biological markers (BMs) as an outcome. Therefore, our aim was to review noninvasive brain stimulation trials in depression using BMs. Methods: The following databases were used for our systematic review: MEDLINE, Web of Science, Cochrane, and SCIELO. We examined articles published before November 2012 that used TMS and transcranial direct current stimulation as an intervention for depression and had BM as an outcome measure. The search was limited to human studies written in English. Results: Of 1234 potential articles, 52 articles were included. Only studies using TMS were found. Biological markers included immune and endocrine serum markers, neuroimaging techniques, and electrophysiological outcomes. In 12 articles (21.4%), end point BM measurements were not significantly associated with clinical outcomes. All studies reached significant results in the main clinical rating scales. Biological marker outcomes were used as predictors of response, to understand mechanisms of TMS, and as a surrogate of safety. Conclusions: Functional magnetic resonance imaging, single-photon emission computed tomography, positron emission tomography, magnetic resonance spectroscopy, cortical excitability, and brain-derived neurotrophic factor consistently showed positive results. Brain-derived neurotrophic factor was the best predictor of patients’ likeliness to respond. These initial results are promising; however, all studies investigating BMs are small, used heterogeneous samples, and did not take into account confounders such as age, sex, or family history. Based on our findings, we recommend further studies to validate BMs in noninvasive brain stimulation trials in MDD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is commonly associated with marked memory deficits; however, nonamnestic variants have been consistently described as well. Posterior cortical atrophy (PCA) is a progressive degenerative condition in which posterior regions of the brain are predominantly affected, therefore resulting in a pattern of distinctive and marked visuospatial symptoms, such as apraxia, alexia, and spatial neglect. Despite the growing number of studies on cognitive and neural bases of the visual variant of AD, intervention studies remain relatively sparse. Current pharmacological treatments offer modest efficacy. Also, there is a scarcity of complementary nonpharmacological interventions with only two previous studies of PCA. Here we describe a highly educated 57-year-old patient diagnosed with a visual variant of AD who participated in a cognitive intervention program (comprising reality orientation, cognitive stimulation, and cognitive training exercises). Neuropsychological assessment was performed across moments (baseline, postintervention, follow-up) and consisted mainly of verbal and visual memory. Baseline neuropsychological assessment showed deficits in perceptive and visual-constructive abilities, learning and memory, and temporal orientation. After neuropsychological rehabilitation, we observed small improvements in the patient's cognitive functioning, namely in verbal memory, attention, and psychomotor abilities. This study shows evidence of small beneficial effects of cognitive intervention in PCA and is the first report of this approach with a highly educated patient in a moderate stage of the disease. Controlled studies are needed to assess the potential efficacy of cognition-focused approaches in these patients, and, if relevant, to grant their availability as a complementary therapy to pharmacological treatment and visual aids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are only a few treatments available for Tourette syndrome (TS). These treatments frequently do notwork in patients with moderate to severe TS [1]. Neuroimaging studies show a correlation between tics severity and increased activation over motor pathways, along with reduced activation over the control areas of the cortico-striato-thalamo-cortical circuits [2]. Moreover, the temporal pattern of tic generation suggests that cortical activation especially in the SMA precedes subcortical activation [3]. Following this assumption, here we explored the brain effects of 10-daily sessions of cathodal transcranial Direct Current Stimulation (tDCS) delivered over the pre-SMA in a patient with refractory and severe TS and also assessed whether those changes were long lasting (up to 6 months).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Psicologia (Especialidade de Psicologia Clínica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia de Plantas